cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046829 Numbers k such that digits of k^2 include digits of k as subsequence.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 25, 50, 60, 76, 95, 96, 100, 101, 105, 110, 125, 205, 250, 305, 371, 376, 405, 441, 500, 501, 505, 506, 525, 600, 601, 605, 625, 676, 705, 756, 760, 805, 825, 826, 905, 946, 950, 960, 976, 995, 996, 1000, 1001, 1005, 1006, 1010, 1011
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A046827, A062118 (subsequence).

Programs

  • Mathematica
    fQ[n_]:=LongestCommonSequence[ToString[n^2],ToString[n]]==ToString[n];
    Select[Range[0,1011],fQ[#]&] (* Ivan N. Ianakiev, Dec 29 2023 *)
  • Python
    from itertools import count, islice
    def A046829_gen(startvalue=0): # generator of terms >= startvalue
        for k in count(max(startvalue,0)):
            c = iter(str(k**2))
            if all(map(lambda b:any(map(lambda a:a==b,c)),str(k))):
                yield k
    A046829_list = list(islice(A046829_gen(),20)) # Chai Wah Wu, Apr 03 2023

Extensions

Offset 1 from Alois P. Heinz, Apr 03 2023

A062120 Numbers k such that k has sqrt(k) as its middle digits.

Original entry on oeis.org

1, 2500, 3600, 62500, 14379264, 57760000, 141376000000, 245495475625, 390625000000, 943971582724, 4482669527413081, 8790937600000000, 31561776563446336, 10235319926865509025
Offset: 1

Views

Author

Brian Wallace (wallacebrianedward(AT)yahoo.co.uk), Jun 28 2001

Keywords

Crossrefs

Cf. A062118.

Programs

  • Mathematica
    Do[ If[ StringPosition[ ToString[n^2], ToString[n]] [[1, 1]] == (Ceiling[ Log[10, n^2] ] - Ceiling[ Log[10, n] ])/2 + 1, Print[n^2] ], {n, 1, 10^9} ]

Formula

a(n) = A062118(n)^2.

A225795 Smallest k > 1 such that k^n has k as its middle digits, or 0 if no such k exists.

Original entry on oeis.org

2, 50, 50, 60, 70, 6, 2, 7600, 47, 5, 4, 93, 6, 34, 5, 9600, 71, 4, 74, 320, 3, 372, 13, 846, 32, 9600, 339, 9765, 202, 3, 69, 6, 9900, 13, 8586, 9600, 4, 46, 3, 4, 446, 3, 9900, 4, 1256, 614, 819, 3365, 8, 36400, 76, 647, 35, 39548, 9900, 4740
Offset: 1

Views

Author

Michel Lagneau, Jul 27 2013

Keywords

Comments

Is a(88) the first 0? If a(88) is nonzero, it is greater than 2 * 10^8. - T. D. Noe, Jul 29 2013

Examples

			a(6) = 6 because 6^6 = 46656 has 6 as its middle digit.
		

Crossrefs

Cf. A062118.

Programs

  • Mathematica
    Table[k = 2; While[c0 = IntegerDigits[k]; c1 = IntegerDigits[k^n]; len0 = Length[c0]; len1 = Length[c1];  f = (len1 - len0)/2; ! (OddQ[len0] == OddQ[len1] && c0 == Take[c1, {f + 1, f + len0}]), k++]; k, {n, 56}] (* T. D. Noe, Jul 29 2013 *)

Extensions

Corrected by T. D. Noe, Jul 29 2013

A227548 Numbers n such that n^3 has n as its middle digits.

Original entry on oeis.org

1, 50, 56, 60, 90, 4900, 5100, 7500, 7600, 9900, 12500, 499000, 501000, 624000, 625000, 749000, 751000, 875000, 999000, 1249000, 13427757, 49990000, 50010000, 56250000, 62490000
Offset: 1

Views

Author

Vincenzo Librandi, Jul 30 2013

Keywords

Examples

			a(6)=4900 because 4900^3 = 117649000000 has 4900 as its middle digits.
		

Crossrefs

Cf. A062118.

Programs

  • Mathematica
    Do[If[StringPosition[ToString[n^3], ToString[n]][[1, 1]] == (Ceiling[Log[10, n^3]] - Ceiling[Log[10, n]]) / 2 + 1, Print[n]], {n, 0, 10^8}]
Showing 1-4 of 4 results.