cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062236 Sum of the levels of all nodes in all noncrossing trees with n edges.

Original entry on oeis.org

1, 8, 58, 408, 2831, 19496, 133638, 913200, 6226591, 42387168, 288194424, 1957583712, 13286865060, 90126841064, 611029568078, 4140789069408, 28050809681679, 189964288098632, 1286119453570746, 8705397371980728, 58912358137385559, 398607288093924192, 2696583955707785256
Offset: 1

Views

Author

Emeric Deutsch, Jun 30 2001

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n,i),i=0..n-1)/n;
    A062236 := n -> 2^(n-2)*(3*n-1)*hypergeom([-3*n,1-n,-n+4/3], [-n,-n+1/3], -1/2):
    seq(simplify(A062236(n)), n = 1..29); # Peter Luschny, Oct 28 2022
  • Mathematica
    Table[Sum[2^(n-2-k)*(n-k)*(3*n-3*k-1)*Binomial[3*n,k],{k,0,n-1}]/n,{n,1,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • PARI
    { for (n=1, 200, a=sum(i=0, n-1, 2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n, i))/n; write("b062236.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 03 2009

Formula

G.f.: g*(g-1)/(3-2*g)^2, where function g=g(x) satisfies g=1+xg^3, and can be expressed as g(x) = 2*sin(arcsin(3*sqrt(3*x)/2)/3)/sqrt(3*x). [Corrected by Max Alekseyev, Oct 27 2022]
g(x) = Sum_{n >= 0} binomial(3*n,n) / (2*n+1) * x^n. - Max Alekseyev, Oct 27 2022
Recurrence: 8*n*(2*n-1)*a(n) = 6*(36*n^2-45*n+10)*a(n-1) - 81*(3*n-5)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 3^(3*n)/2^(2*n+2). - Vaclav Kotesovec, Oct 13 2012
a(n) = Sum_{i=0..n-1} C(3*i-1,i)*C(3*(n-i),n-i-1). - Vladimir Kruchinin, Jun 09 2020
a(n) = 2^(n-2)*(3*n-1)*hypergeometric([-3*n, 1-n, -n+4/3], [-n, -n+1/3], -1/2). The a(n) are values of the polynomials A358091. - Peter Luschny, Oct 28 2022
From Seiichi Manyama, Jul 26 2025: (Start)
G.f.: g/(1-3*g)^2 where g*(1-g)^2 = x.
L.g.f.: Sum_{k>=1} a(k)*x^k/k = (1/2) * log( Sum_{k>=0} binomial(3*k-1,k)*x^k ). (End)
From Seiichi Manyama, Jul 29 2025: (Start)
a(n) = Sum_{k=0..n-1} binomial(3*k-1+l,k) * binomial(3*n-3*k-l,n-k-1) for every real number l. This is a generalization of a formula by Vladimir Kruchinin, Jun 09 2020.
a(n) = Sum_{k=0..n-1} 2^(n-k-1) * binomial(3*n,k).
a(n) = Sum_{k=0..n-1} 3^(n-k-1) * binomial(2*n+k,k). (End)