A062327 Number of divisors of n over the Gaussian integers.
1, 3, 2, 5, 4, 6, 2, 7, 3, 12, 2, 10, 4, 6, 8, 9, 4, 9, 2, 20, 4, 6, 2, 14, 9, 12, 4, 10, 4, 24, 2, 11, 4, 12, 8, 15, 4, 6, 8, 28, 4, 12, 2, 10, 12, 6, 2, 18, 3, 27, 8, 20, 4, 12, 8, 14, 4, 12, 2, 40, 4, 6, 6, 13, 16, 12, 2, 20, 4, 24, 2, 21, 4, 12, 18, 10, 4, 24, 2, 36, 5, 12, 2, 20, 16, 6
Offset: 1
Examples
For example, 5 has divisors 1, 1+2i, 2+i and 5.
Crossrefs
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): this sequence ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), A318608 ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319442.
Programs
-
Haskell
a062327 n = product $ zipWith f (a027748_row n) (a124010_row n) where f 2 e = 2 * e + 1 f p e | p `mod` 4 == 1 = (e + 1) ^ 2 | otherwise = e + 1 -- Reinhard Zumkeller, Oct 18 2011
-
Maple
a:= n-> mul(`if`(i[1]=2, 2*i[2]+1, `if`(irem(i[1], 4)=3, i[2]+1, (i[2]+1)^2)), i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Jul 09 2021
-
Mathematica
Table[Length[Divisors[n, GaussianIntegers -> True]], {n, 30}] (* Alonso del Arte, Jan 25 2011 *) DivisorSigma[0,Range[90],GaussianIntegers->True] (* Harvey P. Dale, Mar 19 2017 *)
-
PARI
a(n)= { my(r=1,f=factor(n)); for(j=1,#f[,1], my(p=f[j,1],e=f[j,2]); if(p==2,r*=(2*e+1)); if(p%4==1,r*=(e+1)^2); if(p%4==3,r*=(e+1)); ); return(r); } \\ Joerg Arndt, Dec 09 2016
Formula
Presumably a(n) = 2 iff n is a rational prime == 3 mod 4 (see A045326). - N. J. A. Sloane, Jan 07 2003, Feb 23 2007
Multiplicative with a(2^e) = 2*e+1, a(p^e) = e+1 if p mod 4=3 and a(p^e) = (e+1)^2 if p mod 4=1. - Vladeta Jovovic, Jan 23 2003
Comments