cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062369 Dirichlet convolution of n and tau^2(n).

Original entry on oeis.org

1, 6, 7, 21, 9, 42, 11, 58, 30, 54, 15, 147, 17, 66, 63, 141, 21, 180, 23, 189, 77, 90, 27, 406, 54, 102, 106, 231, 33, 378, 35, 318, 105, 126, 99, 630, 41, 138, 119, 522, 45, 462, 47, 315, 270, 162, 51, 987, 86, 324, 147, 357, 57, 636, 135, 638, 161, 198, 63, 1323
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Comments

Dirichlet convolution of A000027 and A035116.
Inverse Mobius transform of A060724. - R. J. Mathar, Oct 15 2011

Crossrefs

Programs

  • Magma
    [&+[d*#Divisors(Floor(n/d))^2:d in Divisors(n)]:n in [1..60]]; // Marius A. Burtea, Aug 25 2019
  • Mathematica
    a[n_] := Sum[ DivisorSigma[1, i]*DivisorSigma[1, j] / DivisorSigma[1, LCM[i, j]], {i, Divisors[n]}, {j, Divisors[n]}]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 26 2013 *)
  • PARI
    a(n) = sumdiv(n, d, d*numdiv(n/d)^2); \\ Michel Marcus, Nov 03 2018
    

Formula

a(n) = Sum_{i|n, j|n} sigma(i)*sigma(j)/sigma(lcm(i,j)), where sigma(n) = sum of divisors of n.
a(n) = Sum_{i|d, j|d} sigma(gcd(i, j));
a(n) = Sum_{d|n} d*tau(n/d)^2, where tau(n) = number of divisors of n.
Multiplicative with a(p^e) = (1-p^(3+e)-p^(2+e)+e^2+4*p^2+p^2*e^2+2*e-3*p+4*p^2*e-6*e*p-2*e^2*p)/(1-p)^3.
Dirichlet g.f.: (zeta(s))^4*zeta(s-1)/zeta(2*s). - R. J. Mathar, Feb 09 2011
G.f.: Sum_{k>=1} tau(k)^2*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
Sum_{k=1..n} a(k) ~ 5 * Pi^4 * n^2 / 144. - Vaclav Kotesovec, Jan 28 2019
a(n) = Sum_{d|n} tau(d^2)*sigma(n/d), where tau(n) = number of divisors of n, and sigma(n) = sum of divisors of n. - Ridouane Oudra, Aug 25 2019