cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060724 Number of subgroups of the group C_n X C_n (where C_n is the cyclic group of order n).

Original entry on oeis.org

1, 5, 6, 15, 8, 30, 10, 37, 23, 40, 14, 90, 16, 50, 48, 83, 20, 115, 22, 120, 60, 70, 26, 222, 45, 80, 76, 150, 32, 240, 34, 177, 84, 100, 80, 345, 40, 110, 96, 296, 44, 300, 46, 210, 184, 130, 50, 498, 75, 225, 120, 240, 56, 380, 112, 370, 132, 160, 62, 720, 64
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

Keywords

Examples

			a(2) = 5 because for the group C_2 X C_2 there are the following subgroups: the trivial subgroup, the whole group and the three subgroups of order 2.
		

Crossrefs

Programs

  • GAP
    List([1..50], n->Sum(ConjugacyClassesSubgroups( LatticeSubgroups( DirectProduct( List([n, n], k->CyclicGroup(k)) ))), Size)); # Andrew Howroyd, Jul 01 2018
    
  • Maple
    for n from 1 to 200 do: ans := 1: for i from 1 to nops(ifactors(n)[2]) do p := ifactors(n)[2][i][1]: e := ifactors(n)[2][i][2]: ans := ans*(p^(e+2)+p^(e+1)+1+2*e-3*p-2*e*p)/(p-1)^2: od: printf(`%d,`,ans): od:
  • Mathematica
    ppCase[ {p_Integer, e_Integer} ] := (1-2*e*(p-1)+p*(p^e*(1+p)-3))/(p-1)^2; Table[ Times @@ (ppCase /@ FactorInteger[ i ]), {i, 1, 100} ]
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)*numdiv(d)^2)} \\ Andrew Howroyd, Jul 01 2018
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^2); \\ Seiichi Manyama, May 11 2021
    
  • Sage
    def A060724(n) :
        d = divisors(n); cp = cartesian_product([d, d])
        return reduce(lambda x,y: x+y, map(gcd, cp))
    [A060724(n) for n in (1..61)]   # Peter Luschny, Sep 10 2012

Formula

a(n) is multiplicative: if the canonical factorization of n is the product of p^e(p) over primes then a(n) = product a(p^e(p)). For a prime p: a(p) = p + 3.
a(p^e) = (p^(e+2)+p^(e+1)+1+2*e-3*p-2*e*p)/(p-1)^2.
a(n) = Sum_{i|n, j|n} gcd(i, j). - Vladeta Jovovic, Oct 28 2001
Also a(n) = Sum_{d|n} d*tau((n/d)^2). - Vladeta Jovovic, Apr 01 2002
Also a(n) = Sum_{d|n} phi(n/d)*tau(d)^2.
Inverse Moebius transform of A060648. - Vladeta Jovovic, Mar 31 2009
Dirichlet g.f. zeta^3(s)*zeta(s-1)/zeta(2*s). - R. J. Mathar, Mar 14 2011
a(n) = Sum_{d|n} psi(d)*tau(n/d), where psi is A001615 and tau is A000005. - Enrique Pérez Herrero, Feb 29 2012
Sum_{k=1..n} a(k) ~ 5 * Pi^2 * n^2 / 24. - Vaclav Kotesovec, Jun 02 2019
a(n) = Sum_{k=1..n} tau(gcd(k,n))^2. - Seiichi Manyama, May 11 2021

Extensions

Formula and more terms from Vladeta Jovovic, Jul 06 2001

A064950 a(n) = Sum_{i|n, j|n} lcm(i,j).

Original entry on oeis.org

1, 7, 10, 27, 16, 70, 22, 83, 55, 112, 34, 270, 40, 154, 160, 227, 52, 385, 58, 432, 220, 238, 70, 830, 141, 280, 244, 594, 88, 1120, 94, 579, 340, 364, 352, 1485, 112, 406, 400, 1328, 124, 1540, 130, 918, 880, 490, 142, 2270, 267, 987, 520, 1080, 160, 1708
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[LCM[i,j], {i, Divisors[n]}, {j, Divisors[n]}];
    Array[a,60] (* Jean-François Alcover, Jun 03 2019 *)
    f[p_, e_] := (p^(e+2) - 3*p^(e+1) + p + 1 + 2*p^(e+2)*e - 2*p^(e+1)*e)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 60] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    for (n=1, 1000, d=divisors(n); a=sum(i=1, length(d), numdiv(d[i]^2)*d[i]); write("b064950.txt", n, " ", a)) \\ Harry J. Smith, Oct 01 2009
    
  • Sage
    def A064950(n) :
        tau = sloane.A000005; D = divisors(n)
        return reduce(lambda x,y: x+y, [d*tau(d^2) for d in D])
    [A064950(n) for n in (1..54)] # Peter Luschny, Sep 10 2012

Formula

a(n) = Sum_{d|n} d*tau(d^2).
Multiplicative with a(p^e) = (p^(e+2) - 3*p^(e+1) + p + 1 + 2*p^(e+2)*e - 2*p^(e+1)*e)/(p-1)^2.

A068984 a(n) = Sum_{d|n} d*tau(d)^2.

Original entry on oeis.org

1, 9, 13, 45, 21, 117, 29, 173, 94, 189, 45, 585, 53, 261, 273, 573, 69, 846, 77, 945, 377, 405, 93, 2249, 246, 477, 526, 1305, 117, 2457, 125, 1725, 585, 621, 609, 4230, 149, 693, 689, 3633, 165, 3393, 173, 2025, 1974, 837, 189, 7449, 470, 2214, 897
Offset: 1

Views

Author

Vladeta Jovovic, Apr 01 2002

Keywords

Crossrefs

Programs

  • Magma
    [&+[d*#Divisors(d)^2: d in Divisors(n)]:n in [1..51]]; // Marius A. Burtea, Sep 15 2019
  • Mathematica
    a[n_] := DivisorSum[n, # * DivisorSigma[0, #]^2 &]; Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*numdiv(d)^2) \\ Michel Marcus, Jun 17 2013
    

Formula

Multiplicative with a(p^e) = (p^(e+3)-3*p^(e+2)+4*p^(e+1)-p-1+2*p^(e+3)*e-6*p^(e+2)*e+4*p^(e+1)*e+p^(e+3)*e^2-2*p^(e+2)*e^2+p^(e+1)*e^2)/(p-1)^3.

A344082 a(n) = n * Sum_{d|n} tau(d)^3 / d, where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 10, 11, 47, 13, 110, 15, 158, 60, 130, 19, 517, 21, 150, 143, 441, 25, 600, 27, 611, 165, 190, 31, 1738, 92, 210, 244, 705, 37, 1430, 39, 1098, 209, 250, 195, 2820, 45, 270, 231, 2054, 49, 1650, 51, 893, 780, 310, 55, 4851, 132, 920, 275, 987, 61, 2440, 247, 2370, 297, 370, 67, 6721, 69
Offset: 1

Views

Author

Seiichi Manyama, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, DivisorSigma[0, #]^3/# &]; Array[a, 61] (* Amiram Eldar, May 09 2021 *)
  • PARI
    a(n) = n*sumdiv(n, d, numdiv(d)^3/d);
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k)^3*x^k/(1-x^k)^2))

Formula

G.f.: Sum_{k >= 1} tau(k)^3 * x^k/(1 - x^k)^2.
If p is prime, a(p) = 8 + p.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2)^4 * Product_{p prime} (1 + 4/p^2 + 1/p^4) = 31.237542262502... . - Amiram Eldar, Dec 22 2023
From Peter Bala, Jan 25 2024: (Start)
a(n) = Sum_{d|n, e|n} gcd(d, e) * tau(n/d) * tau(n/e) (the sum is a multiplicative function of n - see Tóth).
Multiplicative: a(p^k) = ( p^(k+2)*(p^2 + 4*p + 1) - p^3*(k + 2)^3 + p^2*(3*k^3 + 15*k^2 + 21*k + 5) - p*(3*k^3 + 12*k^2 + 12*k + 4) + (k + 1)^3 ) / (p - 1)^4. (End)
Showing 1-4 of 4 results.