A062373 Ratio of totient to Carmichael's lambda function is 2.
8, 12, 15, 16, 20, 21, 28, 30, 32, 33, 35, 36, 39, 42, 44, 45, 51, 52, 55, 57, 64, 66, 68, 69, 70, 75, 76, 77, 78, 87, 90, 92, 93, 95, 99, 100, 102, 108, 110, 111, 114, 115, 116, 119, 123, 124, 128, 129, 135, 138, 141, 143, 147, 148, 150, 153, 154, 155, 159, 161
Offset: 1
Examples
From _Jianing Song_, Jul 28 2018: (Start) (Z/8Z)* = C_2 X C_2, so 8 is a term. (Z/21Z)* = C_2 X C_6, so 21 is a term. (Z/35Z)* = C_2 X C_12, so 35 is a term. (End)
Links
- R. J. Mathar, Table of n, a(n) for n = 1..20000
Programs
-
Haskell
a062373 n = a062373_list !! (n-1) a062373_list = filter ((== 2) . a034380) [1..] -- Reinhard Zumkeller, Sep 02 2014
-
Mathematica
Reap[ For[ n = 1, n <= 161, n++, If[ EulerPhi[n] / CarmichaelLambda[n] == 2, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 26 2013 *) Select[Range[200],EulerPhi[#]/CarmichaelLambda[#]==2&] (* Harvey P. Dale, Jun 27 2018 *)
-
PARI
isok(n) = eulerphi(n)/lcm(znstar(n)[2]) == 2; \\ Michel Marcus, Jul 28 2018
Formula
Solutions to phi(k)/lambda(k) = 2.
Extensions
More terms from Reiner Martin, Dec 22 2001
Comments