cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062503 Squarefree numbers squared.

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329, 5476
Offset: 1

Views

Author

Jason Earls, Jul 09 2001

Keywords

Comments

Also, except for the initial term, numbers whose prime factors are squared. - Cino Hilliard, Jan 25 2006
Also cubefree numbers that are squares. - Gionata Neri, May 08 2016
All positive integers have a unique factorization into powers of squarefree numbers with distinct exponents that are powers of two. So every positive number is a product of at most one squarefree number (A005117), at most one square of a squarefree number (term of this sequence), at most one 4th power of a squarefree number (A113849), at most one 8th power of a squarefree number, and so on. - Peter Munn, Mar 12 2020
Powerful numbers (A001694) all of whose nonunitary divisors are not powerful (A052485). - Amiram Eldar, May 13 2023

Crossrefs

Characteristic function is A227291.
Other powers of squarefree numbers: A005117(1), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7), A072774(all).
Cf. A001248 (a subsequence).
A329332 column 2 in ascending order.

Programs

  • Haskell
    a062503 = a000290 . a005117  -- Reinhard Zumkeller, Jul 07 2013
    
  • Mathematica
    Select[Range[100], SquareFreeQ]^2
  • PARI
    je=[]; for(n=1,200, if(issquarefree(n),je=concat(je,n^2),)); je
    
  • PARI
    n=0; for (m=1, 10^5, if(issquarefree(m), write("b062503.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
    
  • PARI
    is(n)=issquare(n,&n) && issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A062503(n):
        def f(x): return n-1+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax**2 # Chai Wah Wu, Aug 19 2024

Formula

Numbers k such that Sum_{d|k} mu(d)*mu(k/d) = 1. - Benoit Cloitre, Mar 03 2004
a(n) = A000290(A005117(n)); A227291(a(n)) = 1. - Reinhard Zumkeller, Jul 07 2013
A000290 \ A062320. - R. J. Mathar, Jul 27 2013
a(n) ~ (Pi^4/36) * n^2. - Charles R Greathouse IV, Nov 24 2015
a(n) = A046692(a(n))^2. - Torlach Rush, Jan 05 2019
For all k in the sequence, Omega(k) = 2*omega(k). - Wesley Ivan Hurt, Apr 30 2020
Sum_{n>=1} 1/a(n) = zeta(2)/zeta(4) = 15/Pi^2 (A082020). - Amiram Eldar, May 22 2020