cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074480 Multiplicative closure of twin prime pair products (A037074).

Original entry on oeis.org

1, 15, 35, 143, 225, 323, 525, 899, 1225, 1763, 2145, 3375, 3599, 4845, 5005, 5183, 7875, 10403, 11305, 11663, 13485, 18375, 19043, 20449, 22499, 26445, 31465, 32175, 32399, 36863, 39203, 42875, 46189, 50625, 51983, 53985, 57599, 61705
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 23 2002

Keywords

Examples

			a(99) = 1040399 = 1019*1021.
a(101) = 1090125 = (3*5)*(3*5)*(3*5)*(17*19).
a(103) = 1101275 = (5*7)*(5*7)*(29*31).
a(105) = 1126125 = (3*5)*(3*5)*(5*7)*(11*13).
		

Crossrefs

Cf. A071700 (subsequence).

Programs

  • Haskell
    import Data.Set (Set, singleton, delete, findMin, deleteFindMin, insert)
    a074480 n = a074480_list !! (n-1)
    a074480_list = multClosure a037074_list where
      multClosure []     = [1]
      multClosure (b:bs) = 1:h [b] (singleton b) bs where
       h cs s []    = m:h (m:cs) (foldl (flip insert) s' $ map (*m) cs) []
        where (m, s') = deleteFindMin s
       h cs s xs'@(x:xs)
        | m < x     = m:h (m:cs) (foldl (flip insert) s' $ map (*m) cs) xs'
        | otherwise = x:h (x:cs) (foldl (flip insert) s  $ map (*x) (x:cs)) xs
        where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Aug 14 2011
  • Mathematica
    max = 70000; t1 = Select[Prime /@ Range[PrimePi[Sqrt[max]]], PrimeQ[# + 2] &]; pairs = Join[{1}, t1*(t1 + 2)]; f[pairs_] := Outer[Times, pairs, pairs] // Flatten // Union // Select[#, # <= max &] &; FixedPoint[f, pairs] (* Jean-François Alcover, Dec 11 2012 *)

Formula

A072965(a(n)) = 1.
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/A037074(k)) = 1.117122860973... . - Amiram Eldar, Apr 13 2025

A079877 Numbers that are divisible by at least one pair of twin primes (A001097).

Original entry on oeis.org

15, 30, 35, 45, 60, 70, 75, 90, 105, 120, 135, 140, 143, 150, 165, 175, 180, 195, 210, 225, 240, 245, 255, 270, 280, 285, 286, 300, 315, 323, 330, 345, 350, 360, 375, 385, 390, 405, 420, 429, 435, 450, 455, 465, 480, 490, 495, 510, 525, 540, 555, 560, 570, 572
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Numbers that are divisible by both primes of some twin-prime pair. Harvey P. Dale, Aug 18 2017
By definition, if k is in the sequence, then so is every positive multiple of k. - Richard Locke Peterson, Aug 17 2017

Examples

			429 = 3*11*13 = 3*A001359(3)*A006512(3), therefore 429 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[600],MemberQ[Differences[Transpose[FactorInteger[#]][[1]]], 2]&] (* Harvey P. Dale, Sep 19 2011 *)

Extensions

Definition clarified by N. J. A. Sloane, Aug 18 2017
Definition further clarified by Sean A. Irvine, Aug 29 2025

A372510 Number of ordered factorizations of 2*n-1 into twin primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 1, 2, 2, 0, 2, 1, 1, 3, 0, 1, 2, 0, 2, 2, 1, 1, 3, 2, 0, 0, 1, 1, 3, 2, 0, 1, 0, 2, 2, 0, 2, 2, 2, 0, 3, 1, 1, 6, 1, 1, 0, 0, 0, 3, 2, 1, 2, 1, 0, 2, 0, 2, 4, 1, 1, 0, 2, 2, 3, 1, 1, 3, 2, 0, 0, 0, 0, 6, 0, 1, 3, 0, 3, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, May 04 2024

Keywords

Examples

			a(23) = 3 because we have 23 * 2 - 1 = 45 = 3 * 3 * 5 = 3 * 5 * 3 = 5 * 3 * 3.
		

Crossrefs

Formula

If 2*n-1 = Product A001097(k)^e(k) then a(n) = A008480(2*n-1), otherwise 0.
Showing 1-3 of 3 results.