A062540 Continued fraction for the Lemniscate constant or Gauss's constant.
2, 1, 1, 1, 1, 1, 4, 1, 2, 5, 1, 1, 1, 14, 9, 2, 6, 2, 9, 4, 1, 10, 2, 4, 1, 8, 2, 1, 5, 3, 11, 3, 17, 2, 338, 2, 3, 1, 1, 6, 3, 1, 2, 1, 1, 1, 2, 1, 2, 3, 9, 1, 1, 1, 2, 21, 1, 1, 2, 5, 3, 1, 1, 3, 1, 1, 10, 1, 1, 1, 40, 1, 2, 7, 1, 1, 2, 2, 2, 1, 1, 2, 81, 1, 2, 2, 1, 1, 4, 8, 3, 5, 1, 1, 3, 180, 2, 1
Offset: 0
Examples
2.622057554292119810464839589891119413682754951431623162816821703... 2.622057554292119810464839589... = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 20 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..4999
- Simon Plouffe, Lemniscate or Gauss constant
Crossrefs
Cf. A062539 (decimal expansion).
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Sqrt(2*Pi(R)^3)/(2*Gamma(3/4)^2)); // G. C. Greubel, Oct 07 2018
-
Mathematica
ContinuedFraction[Sqrt[2*Pi^3]/(2*Gamma[3/4]^2), 100] (* G. C. Greubel, Oct 07 2018 *)
-
PARI
contfrac(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
-
PARI
{ allocatemem(932245000); default(realprecision, 5200); x=contfrac(Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2)); for (n=1, 5000, write("b062540.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 20 2009
Extensions
Offset changed by Andrew Howroyd, Aug 04 2024