cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062540 Continued fraction for the Lemniscate constant or Gauss's constant.

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 4, 1, 2, 5, 1, 1, 1, 14, 9, 2, 6, 2, 9, 4, 1, 10, 2, 4, 1, 8, 2, 1, 5, 3, 11, 3, 17, 2, 338, 2, 3, 1, 1, 6, 3, 1, 2, 1, 1, 1, 2, 1, 2, 3, 9, 1, 1, 1, 2, 21, 1, 1, 2, 5, 3, 1, 1, 3, 1, 1, 10, 1, 1, 1, 40, 1, 2, 7, 1, 1, 2, 2, 2, 1, 1, 2, 81, 1, 2, 2, 1, 1, 4, 8, 3, 5, 1, 1, 3, 180, 2, 1
Offset: 0

Views

Author

Jason Earls, Jun 25 2001

Keywords

Examples

			2.622057554292119810464839589891119413682754951431623162816821703...
2.622057554292119810464839589... = 2 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 20 2009
		

Crossrefs

Cf. A062539 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Sqrt(2*Pi(R)^3)/(2*Gamma(3/4)^2)); // G. C. Greubel, Oct 07 2018
  • Mathematica
    ContinuedFraction[Sqrt[2*Pi^3]/(2*Gamma[3/4]^2), 100] (* G. C. Greubel, Oct 07 2018 *)
  • PARI
    contfrac(1/2*Pi^(3/2)/gamma(3/4)^2*2^(1/2))
    
  • PARI
    { allocatemem(932245000); default(realprecision, 5200); x=contfrac(Pi^(3/2)*sqrt(2)/(2*gamma(3/4)^2)); for (n=1, 5000, write("b062540.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Jun 20 2009
    

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024