cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062700 Terms of A000203 that are prime.

Original entry on oeis.org

3, 7, 13, 31, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 5113, 8011, 10303, 19531, 17293, 28057, 30941, 30103, 131071, 88741, 86143, 147073, 524287, 292561, 459007, 492103, 797161, 552793, 579883, 598303, 684757, 704761, 732541, 735307
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

Sorted and duplicates removed, this gives A023195.

Examples

			sigma(2) = 3, sigma(4) = 7, sigma(9) = 13 are the first three prime terms of A000203. Hence the sequence starts 3, 7, 13.
		

Crossrefs

Cf. A000203 (sigma(n), sum of divisors of n), A023194, A034885 (record values of sigma(n)), A023195 (prime numbers that are the sum of the divisors of some n), A100382 (record values of A062700).

Programs

  • Magma
    [ c: n in [1..1000000] | IsPrime(c) where c:=SumOfDivisors(n) ]; // Klaus Brockhaus, Oct 21 2009
    
  • Mathematica
    Select[DivisorSigma[1,Range[1000000]],PrimeQ] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    je=[]; for(n=1,1000000, if(isprime(sigma(n)),je=concat(je, sigma(n)))); je
    
  • PARI
    { n=0; for (m=1, 10^9, if(isprime(a=sigma(m)), write("b062700.txt", n++, " ", a); if (n==100, break)) ) } \\ Harry J. Smith, Aug 09 2009
    
  • Python
    from sympy import isprime, divisor_sigma
    A062700_list = [3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)] # Chai Wah Wu, Jul 23 2016

Formula

a(n) = A000203(A023194(n)). - Michel Marcus, Oct 19 2019

Extensions

Edited by Klaus Brockhaus, Oct 21 2009