A062700 Terms of A000203 that are prime.
3, 7, 13, 31, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 5113, 8011, 10303, 19531, 17293, 28057, 30941, 30103, 131071, 88741, 86143, 147073, 524287, 292561, 459007, 492103, 797161, 552793, 579883, 598303, 684757, 704761, 732541, 735307
Offset: 1
Keywords
Examples
sigma(2) = 3, sigma(4) = 7, sigma(9) = 13 are the first three prime terms of A000203. Hence the sequence starts 3, 7, 13.
Links
- Harry J. Smith and Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..100 from Harry J. Smith)
Crossrefs
Programs
-
Magma
[ c: n in [1..1000000] | IsPrime(c) where c:=SumOfDivisors(n) ]; // Klaus Brockhaus, Oct 21 2009
-
Mathematica
Select[DivisorSigma[1,Range[1000000]],PrimeQ] (* Harvey P. Dale, Nov 09 2012 *)
-
PARI
je=[]; for(n=1,1000000, if(isprime(sigma(n)),je=concat(je, sigma(n)))); je
-
PARI
{ n=0; for (m=1, 10^9, if(isprime(a=sigma(m)), write("b062700.txt", n++, " ", a); if (n==100, break)) ) } \\ Harry J. Smith, Aug 09 2009
-
Python
from sympy import isprime, divisor_sigma A062700_list = [3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)] # Chai Wah Wu, Jul 23 2016
Formula
Extensions
Edited by Klaus Brockhaus, Oct 21 2009
Comments