A062708 Write 0,1,2,3,4,... in a triangular spiral; then a(n) is the sequence found by reading the terms along the line from 0 in the direction 0,2,...
0, 2, 13, 33, 62, 100, 147, 203, 268, 342, 425, 517, 618, 728, 847, 975, 1112, 1258, 1413, 1577, 1750, 1932, 2123, 2323, 2532, 2750, 2977, 3213, 3458, 3712, 3975, 4247, 4528, 4818, 5117, 5425, 5742, 6068, 6403, 6747, 7100, 7462, 7833, 8213, 8602, 9000
Offset: 0
Examples
The spiral begins: . 15 / \ 16 14 / \ 17 3 13 / / \ \ 18 4 2 12 / / \ \ 19 5 0---1 11 / / \ 20 6---7---8---9--10 . From _Vincenzo Librandi_, Aug 07 2010: (Start) a(1) = 9*1 + 0 - 7 = 2; a(2) = 9*2 + 2 - 7 = 13; a(3) = 9*3 + 13 - 7 = 33. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions [broken link]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(9*n-5)/2); # G. C. Greubel, Sep 02 2019
-
Magma
[n*(9*n-5)/2: n in [0..50]]; // G. C. Greubel, Sep 02 2019
-
Maple
seq(n*(9*n-5)/2, n=0..50); # G. C. Greubel, Sep 02 2019
-
Mathematica
Table[n*(9*n-5)/2, {n,0,50}] (* G. C. Greubel, Sep 02 2019 *) nxt[{n_,a_}]:={n+1,9(n+1)+a-7}; NestList[nxt,{0,0},50][[All,2]] (* Harvey P. Dale, Apr 11 2022 *)
-
PARI
a(n)=n*(9*n-5)/2 \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[n*(9*n-5)/2 for n in (0..50)] # G. C. Greubel, Sep 02 2019
Formula
a(n) = n*(9*n-5)/2.
a(n) = 9*n + a(n-1) - 7 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Jul 07 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(2+7*x)/(1-x)^3. (End)
a(n) = A218470(9n+1). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(4 + 9*x)*exp(x)/2. - G. C. Greubel, Sep 02 2019