A226488
a(n) = n*(13*n - 9)/2.
Original entry on oeis.org
0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A005843 (k=0),
A000096 (k=1),
A002378 (k=2),
A005449 (k=3),
A001105 (k=4),
A005476 (k=5),
A049450 (k=6),
A218471 (k=7),
A002939 (k=8),
A062708 (k=9),
A135706 (k=10),
A180223 (k=11),
A139267 (n=12), this sequence (k=13),
A139268 (k=14),
A226489 (k=15),
A139271 (k=16),
A180232 (k=17),
A152995 (k=18),
A226490 (k=19),
A152965 (k=20),
A226491 (k=21),
A152997 (k=22).
-
List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
-
[n*(13*n-9)/2: n in [0..50]];
-
I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
-
Table[n(13n-9)/2, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
A218470
Partial sums of floor(n/9).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0
As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
-
[&+[Floor(k/9): k in [0..n]]: n in [0..70]]; // Bruno Berselli, Mar 27 2013
-
Accumulate[Floor[Range[0, 100]/9]] (* Jean-François Alcover, Mar 27 2013 *)
-
for(n=0,50, print1(sum(k=0,n, floor(k/9)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\9); k*(9*k-7)/2 + k*(n-9*k) \\ Charles R Greathouse IV, Dec 13 2016
A226492
a(n) = n*(11*n-5)/2.
Original entry on oeis.org
0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0
Cf. sequences in Comments lines.
-
[n*(11*n-5)/2: n in [0..50]];
-
I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
-
Table[n (11 n - 5)/2, {n, 0, 50}]
CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
-
a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015
A238731
Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A139610
a(n) = 45*n + 10.
Original entry on oeis.org
10, 55, 100, 145, 190, 235, 280, 325, 370, 415, 460, 505, 550, 595, 640, 685, 730, 775, 820, 865, 910, 955, 1000, 1045, 1090, 1135, 1180, 1225, 1270, 1315, 1360, 1405, 1450, 1495, 1540, 1585, 1630, 1675, 1720, 1765, 1810, 1855, 1900
Offset: 0
A198392
a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.
Original entry on oeis.org
2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0
Cf. sequences related to the triangular spiral:
A022266,
A022267,
A027468,
A038764,
A045946,
A051682,
A062708,
A062725,
A062728,
A062741,
A064225,
A064226,
A081266-
A081268,
A081270-
A081272,
A081275 [incomplete list].
-
[(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
-
LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
-
for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
A304503
a(n) = 3*(n+1)*(9*n+4).
Original entry on oeis.org
12, 78, 198, 372, 600, 882, 1218, 1608, 2052, 2550, 3102, 3708, 4368, 5082, 5850, 6672, 7548, 8478, 9462, 10500, 11592, 12738, 13938, 15192, 16500, 17862, 19278, 20748, 22272, 23850, 25482, 27168, 28908, 30702, 32550, 34452, 36408, 38418, 40482, 42600, 44772
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
seq((3*(n+1))*(9*n+4), n = 0 .. 40);
-
Vec(6*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
A304505
a(n) = 4*(n+1)*(9*n+4).
Original entry on oeis.org
16, 104, 264, 496, 800, 1176, 1624, 2144, 2736, 3400, 4136, 4944, 5824, 6776, 7800, 8896, 10064, 11304, 12616, 14000, 15456, 16984, 18584, 20256, 22000, 23816, 25704, 27664, 29696, 31800, 33976, 36224, 38544, 40936, 43400, 45936, 48544, 51224, 53976, 56800, 59696
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50],n->4*(n+1)*(9*n+4)); # Muniru A Asiru, May 14 2018
-
seq((4*(n+1))*(9*n+4), n = 0 .. 40);
-
a(n) = 4*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
-
Vec(8*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
A304507
a(n) = 5*(n+1)*(9*n+4).
Original entry on oeis.org
20, 130, 330, 620, 1000, 1470, 2030, 2680, 3420, 4250, 5170, 6180, 7280, 8470, 9750, 11120, 12580, 14130, 15770, 17500, 19320, 21230, 23230, 25320, 27500, 29770, 32130, 34580, 37120, 39750, 42470, 45280, 48180, 51170, 54250, 57420, 60680, 64030, 67470, 71000, 74620
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, Journal of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..50], n -> 5*(n+1)*(9*n+4)); # Muniru A Asiru, May 15 2018
-
seq((5*(n+1))*(9*n+4), n = 0 .. 40);
-
Array[5 (# + 1) (9 # + 4) &, 41, 0] (* or *)
LinearRecurrence[{3, -3, 1}, {20, 130, 330}, 41] (* or *)
CoefficientList[Series[10 (2 + 7 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
-
a(n) = 5*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
-
Vec(10*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
A194582
Triangle T(n,k), read by rows, given by (0, 3, -7/3, -2/21, 3/7, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 2, 6, 1, 0, 2, 13, 9, 1, 0, 2, 16, 33, 12, 1, 0, 2, 20, 69, 62, 15, 1, 0, 2, 24, 108, 188, 100, 18, 1, 0, 2, 28, 156, 401, 400, 147, 21, 1, 0, 2, 32, 212, 704, 1115, 732, 203, 24, 1, 0, 2, 36, 276, 1120, 2433, 2547, 1211, 268, 27, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 2, 6, 1;
0, 2, 13, 9, 1;
0, 2, 16, 33, 12, 1;
0, 2, 20, 69, 62, 15, 1;
0, 2, 24, 108, 188, 100, 18, 1;
0, 2, 28, 156, 401, 400, 147, 21, 1;
T(3, 2) = 6 enumerates the pairs of Fibonacci bit string of length 3 with 2 matching 1 bits: (101, 101), (101, 111), (110, 110), (110, 111), (111, 101), (111, 110). - _Michael Somos_, Feb 28 2020
-
nmax=10; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - x)/(1 - x - x*y - 2*x^2*y + x^3*y) , {x, 0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017, after R. J. Mathar *)
-
T(n,k) = if(n==k, 1, if(k==0, 0, if(n>1 && k==n - 1, 3*k, T(n - 1, k) + T(n - 1,k - 1) + 2*T(n - 2,k - 1) - T(n-3,k-1))));
{for(n=0, 10, for(k=0, n, print1(T(n,k),", ");); print();); } \\ Indranil Ghosh, Mar 10 2017
Showing 1-10 of 11 results.
Comments