cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A218470 Partial sums of floor(n/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2013

Keywords

Comments

Apart from the initial zeros, the same as A008727.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
		

Crossrefs

Cf. similar sequences: A118729, A174109, A174738.

Programs

Formula

a(9n) = A051682(n).
a(9n+1) = A062708(n).
a(9n+2) = A062741(n).
a(9n+3) = A022266(n).
a(9n+4) = A022267(n).
a(9n+5) = A081266(n).
a(9n+6) = A062725(n).
a(9n+7) = A062728(n).
a(9n+8) = A027468(n).
G.f.: x^9/((1-x)^2*(1-x^9)). - Bruno Berselli, Mar 27 2013

A226492 a(n) = n*(11*n-5)/2.

Original entry on oeis.org

0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0

Views

Author

Bruno Berselli, Jun 11 2013

Keywords

Comments

Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...

Crossrefs

Cf. sequences in Comments lines.
First differences are in A017425.

Programs

  • Magma
    [n*(11*n-5)/2: n in [0..50]];
    
  • Magma
    I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (11 n - 5)/2, {n, 0, 50}]
    CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)

A238731 Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2014

Keywords

Comments

Unsigned version of A124037 and A126126.
Subtriangle of the triangle given by (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A001075(n).
Diagonal sums are A133494(n).
Sum_{k=0..n} T(n,k)*x^k = A001519(n), A001075(n), A002320(n), A038723(n), A033889(n) for x = 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 05 2014

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-2*x)/(1-(y+3)*x+x^2). - Philippe Deléham, Mar 05 2014

A139610 a(n) = 45*n + 10.

Original entry on oeis.org

10, 55, 100, 145, 190, 235, 280, 325, 370, 415, 460, 505, 550, 595, 640, 685, 730, 775, 820, 865, 910, 955, 1000, 1045, 1090, 1135, 1180, 1225, 1270, 1315, 1360, 1405, 1450, 1495, 1540, 1585, 1630, 1675, 1720, 1765, 1810, 1855, 1900
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 10th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.

Crossrefs

Programs

Formula

a(n) = A057145(n+2,10).
G.f.: 5*(2+7*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 16 2024: (Start)
E.g.f.: 5*exp(x)*(2 + 9*x).
a(n) = 5*A017185(n) = 5*(A062708(n+1) - A062708(n)).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A198392 a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.

Original entry on oeis.org

2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2011

Keywords

Comments

For an origin of this sequence, see the triangular spiral illustrated in the Links section.
First bisection gives A117625 (without the initial term).

Crossrefs

Cf. A152832 (by Superseeker).
Cf. sequences related to the triangular spiral: A022266, A022267, A027468, A038764, A045946, A051682, A062708, A062725, A062728, A062741, A064225, A064226, A081266-A081268, A081270-A081272, A081275 [incomplete list].

Programs

  • Magma
    [(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
    

Formula

G.f.: (2+2*x+4*x^2+2*x^3-x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-1) = A168329(n+1).
a(n)+a(n-1) = A102214(n).
a(2n)-a(2n-1) = A016885(n).
a(2n+1)-a(2n) = A016825(n).

A304503 a(n) = 3*(n+1)*(9*n+4).

Original entry on oeis.org

12, 78, 198, 372, 600, 882, 1218, 1608, 2052, 2550, 3102, 3708, 4368, 5082, 5850, 6672, 7548, 8478, 9462, 10500, 11592, 12738, 13938, 15192, 16500, 17862, 19278, 20748, 22272, 23850, 25482, 27168, 28908, 30702, 32550, 34452, 36408, 38418, 40482, 42600, 44772
Offset: 0

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

The first Zagreb index of the single-defect 3-gonal nanocone CNC(3,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(3,n) is M(CNC(3,n);x,y) = 3*x^2*y^2 + 6*n*x^2*y^3 + 3*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n);x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
12*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • Maple
    seq((3*(n+1))*(9*n+4), n = 0 .. 40);
  • PARI
    Vec(6*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 6*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 3*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 6*A062708(n+1) = A017209(n)*A008585(n+1). (End)

A304505 a(n) = 4*(n+1)*(9*n+4).

Original entry on oeis.org

16, 104, 264, 496, 800, 1176, 1624, 2144, 2736, 3400, 4136, 4944, 5824, 6776, 7800, 8896, 10064, 11304, 12616, 14000, 15456, 16984, 18584, 20256, 22000, 23816, 25704, 27664, 29696, 31800, 33976, 36224, 38544, 40936, 43400, 45936, 48544, 51224, 53976, 56800, 59696
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

a(n) is the first Zagreb index of the single-defect 4-gonal nanocone CNC(4,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(4,n) is M(CNC(4,n); x,y) = 4*x^2*y^2 + 8*n*x^2*y^3 + 2*n*(3*n+1)*x^3*y^3.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
9*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • GAP
    List([0..50],n->4*(n+1)*(9*n+4)); # Muniru A Asiru, May 14 2018
    
  • Maple
    seq((4*(n+1))*(9*n+4), n = 0 .. 40);
  • PARI
    a(n) = 4*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(8*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 8*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 4*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 8*A062708(n+1) = A017209(n)*A008586(n+1). (End)

A304507 a(n) = 5*(n+1)*(9*n+4).

Original entry on oeis.org

20, 130, 330, 620, 1000, 1470, 2030, 2680, 3420, 4250, 5170, 6180, 7280, 8470, 9750, 11120, 12580, 14130, 15770, 17500, 19320, 21230, 23230, 25320, 27500, 29770, 32130, 34580, 37120, 39750, 42470, 45280, 48180, 51170, 54250, 57420, 60680, 64030, 67470, 71000, 74620
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

The first Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.

Crossrefs

Programs

  • GAP
    List([0..50], n -> 5*(n+1)*(9*n+4)); # Muniru A Asiru, May 15 2018
  • Maple
    seq((5*(n+1))*(9*n+4), n = 0 .. 40);
  • Mathematica
    Array[5 (# + 1) (9 # + 4) &, 41, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {20, 130, 330}, 41] (* or *)
    CoefficientList[Series[10 (2 + 7 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = 5*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(10*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
    

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 10*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 10*A062708(n+1) for n >= 0. - Robert G. Wilson v, May 14 2018
a(n) = 5*A011862(9*n+7) = 5*A108579(6*n+7). - Bruno Berselli, May 15 2018
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 5*A017209(n)*A008587(n+1). (End)

A194582 Triangle T(n,k), read by rows, given by (0, 3, -7/3, -2/21, 3/7, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 2, 6, 1, 0, 2, 13, 9, 1, 0, 2, 16, 33, 12, 1, 0, 2, 20, 69, 62, 15, 1, 0, 2, 24, 108, 188, 100, 18, 1, 0, 2, 28, 156, 401, 400, 147, 21, 1, 0, 2, 32, 212, 704, 1115, 732, 203, 24, 1, 0, 2, 36, 276, 1120, 2433, 2547, 1211, 268, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 23 2012

Keywords

Comments

Riordan array (1, x*(1+2x-x^2)/(1-x)).
Row sums are (Fibonacci(n+1))^2 = A007598(n+1).
T(n, k) is the number of ordered pairs of Fibonacci bit strings of length n with the number of matching 1 bits in the same position is k. A Fibonacci bit string begins a 1 bit and no two consecutive bits are 0 bits. - Michael Somos, Feb 28 2020

Examples

			Triangle begins:
  1;
  0,   1;
  0,   3,   1;
  0,   2,   6,   1;
  0,   2,  13,   9,   1;
  0,   2,  16,  33,  12,   1;
  0,   2,  20,  69,  62,  15,   1;
  0,   2,  24, 108, 188, 100,  18,   1;
  0,   2,  28, 156, 401, 400, 147,  21,   1;
T(3, 2) = 6 enumerates the pairs of Fibonacci bit string of length 3 with 2 matching 1 bits: (101, 101), (101, 111), (110, 110), (110, 111), (111, 101), (111, 110). - _Michael Somos_, Feb 28 2020
		

Crossrefs

Cf. A000045, A007598. Diagonals: A000012, A008585, A062708.

Programs

  • Mathematica
    nmax=10; Flatten[CoefficientList[Series[CoefficientList[Series[(1 - x)/(1 - x - x*y - 2*x^2*y + x^3*y)  , {x,  0, nmax}], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 10 2017, after  R. J. Mathar *)
  • PARI
    T(n,k) = if(n==k, 1, if(k==0, 0, if(n>1 && k==n - 1, 3*k, T(n - 1, k) + T(n - 1,k - 1) + 2*T(n - 2,k - 1) - T(n-3,k-1))));
    {for(n=0, 10, for(k=0, n, print1(T(n,k),", ");); print();); } \\ Indranil Ghosh, Mar 10 2017

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1) - T(n-3,k-1).
G.f.: (1-x)/(1-x-x*y-2*x^2*y+x^3*y). - R. J. Mathar, Aug 11 2015
Showing 1-10 of 11 results. Next