cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062868 Number of permutations of degree n with barycenter 0.

Original entry on oeis.org

1, 1, 2, 4, 14, 46, 282, 1394, 12658, 83122, 985730, 8012962, 116597538, 1127575970, 19410377378, 217492266658, 4320408974978, 55023200887938, 1238467679662722, 17665859065690754, 444247724347355554, 7015393325151055906, 194912434760367113570, 3375509056735963889634
Offset: 0

Views

Author

Olivier Gérard, Jun 26 2001

Keywords

Comments

The barycenter or signcenter of a permutation is the sum of the signs of the difference between initial and final positions of the objects.

Examples

			(4,1,3,5,2) has difference (3,-1,0,1,-3) and signs (1,-1,0,1,-1) with total 0.
		

Crossrefs

Column k=0 of A062866 or of A062867.

Programs

  • Maple
    b:= proc(s, t) option remember; (n-> `if`(abs(t)>n, 0, `if`(n=0, 1,
          add(b(s minus {j}, t+signum(n-j)), j=s))))(nops(s))
        end:
    a:= n-> b({$1..n}, 0):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jul 31 2018
  • Mathematica
    E1[n_ /; n >= 0, 0] = 1;
    E1[n_, k_] /; k < 0 || k > n = 0;
    E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
    b[n_] := Sum[(-1)^(n-k) E1[n+k, n] Binomial[2n, n-k], {k, 0, n}];
    a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}];
    a /@ Range[0, 150] (* Jean-François Alcover, Oct 29 2020, after Peter Luschny in A320337 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, n-2*k)*A320337(k). - Maxwell Jiang, Dec 19 2018 (added by editors)
a(n) ~ sqrt(3) * (1 + exp(-2)*(-1)^n) * n^n / exp(n). - Vaclav Kotesovec, Oct 29 2020

Extensions

One more term from Vladeta Jovovic, Jun 28 2001
a(11)-a(14) from Hugo Pfoertner, Sep 23 2004
a(15)-a(18) from R. H. Hardin, Jul 18 2010
a(19)-a(22) from Kyle G Hess, Jul 30 2018
a(0)=1 prepended by Alois P. Heinz, Jul 30 2018
Terms a(23) and beyond from Maxwell Jiang, Dec 19 2018