cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062869 Triangle read by rows: For n >= 0, k >= 0, T(n,k) is the number of permutations pi of n such that the total distance Sum_i abs(i-pi(i)) = 2k. Equivalently, k = Sum_i max(i-pi(i),0).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 4, 1, 4, 12, 24, 35, 24, 20, 1, 5, 18, 46, 93, 137, 148, 136, 100, 36, 1, 6, 25, 76, 187, 366, 591, 744, 884, 832, 716, 360, 252, 1, 7, 33, 115, 327, 765, 1523, 2553, 3696, 4852, 5708, 5892, 5452, 4212, 2844, 1764, 576, 1, 8, 42, 164, 524
Offset: 0

Views

Author

Olivier Gérard, Jun 26 2001

Keywords

Comments

Number of possible values is 1,2,3,5,7,10,13,17,21,... = A033638. Maximum distance divided by 2 is the same minus one, i.e., 0,1,2,4,6,9,12,16,20,... = A002620.
T. Kyle Petersen and Bridget Eileen Tenner proved that T(n,k) is also the number of permutations of n for which the sum of descent differences equals k. - Susanne Wienand, Sep 11 2014

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 1;
  1, 2,  3;
  1, 3,  7,  9,   4;
  1, 4, 12, 24,  35,  24,  20;
  1, 5, 18, 46,  93, 137, 148, 136, 100,  36;
  1, 6, 25, 76, 187, 366, 591, 744, 884, 832, 716, 360, 252;
  ...
(4,3,1,2) has distances (3,1,2,2), sum is 8 and there are 3 other permutations of degree 4 with this sum.
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 3, (1998), page 22 (exercise 28) and page 597 (solution and comments).

Crossrefs

Row sums give A000142.
T(2n,n) gives A072948.
A357329 is a sub-triangle.

Programs

  • Maple
    # The following program yields the entries of the specified row n
    n := 9: with(combinat): P := permute(n): excsum := proc (p) (1/2)*add(abs(p[i]-i), i = 1 .. nops(p)) end proc: f[n] := sort(add(t^excsum(P[j]), j = 1 .. factorial(n))): seq(coeff(f[n], t, j), j = 0 .. floor((1/4)*n^2)); # Emeric Deutsch, Apr 02 2010
    # Maple program using the g.f. given by Guay-Paquey and Petersen:
    g:= proc(h, n) local i, j; j:= irem(h, 2, 'i');
           1-`if`(h=n, 0, (i+1)*z*t^(i+j)/g(h+1, n))
        end:
    T:= n-> (p-> seq(coeff(p, t, k), k=0..degree(p)))
            (coeff(series(1/g(0, n), z, n+1), z, n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, May 02 2014
  • Mathematica
    g[h_, n_] := Module[{i, j}, {i, j} = QuotientRemainder[h, 2]; 1 - If[h == n, 0, (i + 1)*z*t^(i + j)/g[h + 1, n]]]; T[n_] := Function[p, Table[ Coefficient[p, t, k], {k, 0, Exponent[p, t]}]][SeriesCoefficient[ 1/g[0, n], {z, 0, n}]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 07 2016, after Alois P. Heinz *)
    f[i_] := If[i == 1, 1, -(i-1)^2 t^(2i - 3) z^2];
    g[i_] := 1 - (2i - 1) t^(i-1) z;
    cf = ContinuedFractionK[f[i], g[i], {i, 1, 5}];
    CoefficientList[#, t]& /@ CoefficientList[cf + O[z]^10, z] // Rest // Flatten (* Jean-François Alcover, Nov 25 2018, after Mathieu Guay-Paquet *)
  • Sage
    # The following Sage program
    # yields the entries of the first n rows
    # as a list of lists
    def get_first_rows(n):
        R, t = PolynomialRing(ZZ, 't').objgen()
        S, z = PowerSeriesRing(R, 'z').objgen()
        gf = S(1).add_bigoh(1)
        for i in srange(n, 0, -1):
            a = (i+1) // 2
            b = i // 2
            gf = 1 / (1 - a * t^b * z * gf)
        return [list(row) for row in gf.shift(-1)]
    # Mathieu Guay-Paquet, Apr 30 2014

Formula

From Mathieu Guay-Paquet, Apr 30 2014: (Start)
G.f.: 1/(1-z/(1-t*z/(1-2*t*z/(1-2*t^2*z/(1-3*t^2*z/(1-3*t^3*z/(1-4*t^3*z/(1-4*t^4*z/(...
This is a continued fraction where the (2i)th numerator is (i+1)*t^i*z, and the (2i+1)st numerator is (i+1)*t^(i+1)*z for i >= 0. The coefficient of z^n gives row n, n >= 1, and the coefficient of t^k gives column k, k >= 0. (End)
From Alois P. Heinz, Oct 02 2022: (Start)
Sum_{k=0..floor(n^2/4)} k * T(n,k) = A005990(n).
Sum_{k=0..floor(n^2/4)} (-1)^k * T(n,k) = A009006(n). (End).

Extensions

T(0,0)=1 prepended by Alois P. Heinz, Oct 03 2022

A342140 Number of permutations of degree n with greatest sum of distances and highest Shannon entropy.

Original entry on oeis.org

1, 1, 3, 2, 17, 4, 86, 4, 488, 12, 3172, 40, 22912, 56, 166814, 256
Offset: 1

Views

Author

Andrea G. Amato, Mar 01 2021

Keywords

Comments

Starting from a list of n ordered numbers, the sequence gives the number of permutations of the list that display both the greatest sum of distances (see A007590 and A062870) and the highest Shannon entropy (see A341838 for a more in-depth explanation on how to calculate it).
A way to interpret this is to see these permutations as the ones with both the highest level of disorder and the greatest distance from a starting configuration.

Examples

			Starting from (1,2,3,4), there are only two permutations that have both the greatest sum of distances (which is 8 for n=4) and the highest Shannon entropy (which is 1.039720... for n=4). These permutations are (3,4,2,1) and (4,3,1,2).
		

Crossrefs

Cf. A007590 (greatest sum of distances of a given n).
Cf. A062870 (permutations that possess this property).
Cf. A341838 (number of permutations with the highest Shannon entropy).

Extensions

a(13)-a(15) from Hugo Pfoertner, Mar 02 2021
a(16) from Hugo Pfoertner, Mar 07 2021
Showing 1-2 of 2 results.