A062895 Numbers k for which d(k) = d(R(k)), where R(k) is the reversal of k and d(k) is the number of divisors of k.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 24, 26, 31, 33, 37, 39, 42, 44, 51, 55, 58, 62, 66, 71, 73, 77, 79, 85, 88, 93, 97, 99, 101, 107, 111, 113, 115, 117, 121, 122, 123, 129, 131, 141, 143, 149, 151, 155, 157, 158, 159, 161, 165, 167, 169, 171, 177, 178, 179
Offset: 1
Examples
d(24) = 8 and also d(42) = 8, hence both are members.
Links
- Mohammed Yaseen, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
Crossrefs
Programs
-
Mathematica
Select[Range[180],DivisorSigma[0,#]==DivisorSigma[0,FromDigits[Reverse[IntegerDigits[#]]]] &] (* Jayanta Basu, May 17 2013 *)
-
PARI
{ n=0; for (m=1, 10^9, x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if (numdiv(m) == numdiv(r), write("b062895.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 12 2009
-
PARI
isok(k) = numdiv(fromdigits(Vecrev(digits(k)))) == numdiv(k); \\ Michel Marcus, Jul 06 2021
-
Python
from sympy import divisor_count as d def ok(n): return d(n) == d(int(str(n)[::-1])) print([k for k in range(1, 180) if ok(k)]) # Michael S. Branicky, Mar 24 2023
Extensions
Corrected and extended by Vladeta Jovovic, Jun 30 2001
Comments