cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181354 Number of n-digit perfect cubes.

Original entry on oeis.org

2, 2, 5, 12, 25, 53, 116, 249, 535, 1155, 2487, 5358, 11545, 24871, 53584, 115444, 248715, 535841, 1154435, 2487154, 5358411, 11544347, 24871542, 53584111, 115443470, 248715414, 535841116, 1154434691, 2487154143, 5358411166
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

a(n) is also the total number of n-digit numbers requiring 1 positive cube in their representation as sum of cubes.
a(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).
Differs from A062941 only at n=1, because 0 is considered a 0-digit, not a 1-digit number here. - R. J. Mathar, Jul 09 2011

Crossrefs

Programs

  • Maple
    a:=n->ceil(10^(n/3))-ceil(10^((n-1)/3));
  • Mathematica
    With[{c = Range[4650000]^3}, Length[#]&/@Table[Select[c, IntegerLength[#] == n &], {n, 20}]] (* Harvey P. Dale, Feb 01 2011 *)
    Differences[Ceiling[10^(Range[0, 30]/3)]]

Formula

a(n) = A061439(n) - A061439(n-1).

Extensions

More terms from T. D. Noe, Feb 01 2011

A102831 Number of n-digit 4th powers.

Original entry on oeis.org

2, 2, 2, 4, 8, 14, 25, 43, 78, 139, 246, 437, 779, 1384, 2461, 4376, 7783, 13840, 24612, 43765, 77828, 138400, 246114, 437658, 778280, 1383998, 2461136, 4376586, 7782795, 13839982, 24611356, 43765867, 77827942, 138399825, 246113559
Offset: 1

Views

Author

James R. Buddenhagen, Feb 27 2005

Keywords

Comments

The number 0 is considered a 1-digit 4th power. This is consistent with A062941 which considers 0 a 1-digit cube, but is inconsistent with A049415 which does not consider 0 a 1-digit square.

Examples

			a(1)=2 because there are 2 1-digit 4th powers, 0 and 1.
		

Crossrefs

Column k=4 of A216653.

Programs

  • Maple
    r:= proc(n, k) local b; b:= iroot(n, k); b+`if`(b^k r(10^n, 4) -r(10^(n-1), 4) +`if`(n=1, 1, 0):
    seq(a(n), n=1..50);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    f[n_] := If[n == 1, 2, Ceiling[ Sqrt[ Sqrt[10^n]]] - Ceiling[ Sqrt[ Sqrt[10^(n - 1)]]]]; Table[ f[n], {n, 34}] (* Robert G. Wilson v, Mar 03 2005 *)

Extensions

More terms from Robert G. Wilson v, Mar 03 2005

A216653 Number A(n,k) of n-digit k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

10, 4, 90, 3, 6, 900, 2, 2, 22, 9000, 2, 2, 5, 68, 90000, 2, 1, 2, 12, 217, 900000, 2, 1, 1, 4, 25, 683, 9000000, 2, 0, 1, 3, 8, 53, 2163, 90000000, 2, 0, 1, 1, 3, 14, 116, 6837, 900000000, 2, 0, 1, 1, 2, 6, 25, 249, 21623, 9000000000
Offset: 1

Views

Author

Alois P. Heinz, Sep 12 2012

Keywords

Examples

			A(1,1) = 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
A(1,2) = 4: 0, 1, 4, 9.
A(2,2) = 6: 16, 25, 36, 49, 64, 81.
A(3,3) = 5: 125, 216, 343, 512, 729.
A(4,4) = 4: 1296, 2401, 4096, 6561.
A(5,5) = 3: 16807, 32768, 59049.
A(6,6) = 3: 117649, 262144, 531441.
Square array A(n,k) begins:
:n\k|        1:     2:    3:   4:   5:  6:  7:  8
+---+--------------------------------------------
: 1 |       10,     4,    3,   2,   2,  2,  2,  2
: 2 |       90,     6,    2,   2,   1,  1,  0,  0
: 3 |      900,    22,    5,   2,   1,  1,  1,  1
: 4 |     9000,    68,   12,   4,   3,  1,  1,  1
: 5 |    90000,   217,   25,   8,   3,  2,  2,  1
: 6 |   900000,   683,   53,  14,   6,  3,  2,  1
: 7 |  9000000,  2163,  116,  25,  10,  5,  2,  2
: 8 | 90000000,  6837,  249,  43,  14,  7,  4,  2
		

Crossrefs

Main diagonal gives: A102690.

Programs

  • Maple
    r:= proc(n, k) local b; b:= iroot(n, k); b+`if`(b^k r(10^n, k) -r(10^(n-1), k) +`if`(n=1, 1, 0):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);

A062940 Number of squares (including 0) with n digits.

Original entry on oeis.org

4, 6, 22, 68, 217, 683, 2163, 6837, 21623, 68377, 216228, 683772, 2162278, 6837722, 21622777, 68377223, 216227767, 683772233, 2162277661, 6837722339, 21622776602, 68377223398, 216227766017, 683772233983, 2162277660169
Offset: 1

Views

Author

Amarnath Murthy, Jul 07 2001

Keywords

Comments

Sum of first 2n terms = 10^n. - Zak Seidov, Aug 05 2006
a(n)/a(n-1) ~ 10^(1/2). For the sequence giving the number of members of the sequence a(k)=k^r with n digits we have a(n)/a(n-1) ~ 10^(1/r). - Ctibor O. Zizka, Mar 09 2008

Examples

			a(1)=4 because there are 4 one-digit squares: 0,1,4,9. - _Zak Seidov_, Aug 05 2006
a(2)=6 because there are 6 two-digit squares: 16,25,36,49,64,81. - _Zak Seidov_, Aug 05 2006
22 squares (100=10^2, 121=11^2, ..., 961=31^2) have 3 digits, hence a(3)=22.
		

Crossrefs

A variant of A049415. A049415(n) = A017936(n+1) - A017936(n) = A049416(n+1) - A049416(n). Cf. A000290, A062941.
Column k=2 of A216653.

Programs

  • Maple
    r:= proc(n, k) local b; b:= iroot(n, k); b+`if`(b^k r(10^n, 2) -r(10^(n-1), 2) +`if`(n=1, 1, 0):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 12 2012
  • PARI
    je=[4]; for(n=2, 45, je=concat(je, ceil(sqrt(10^n))-ceil(sqrt(10^(n-1))))); je
    
  • PARI
    { default(realprecision, 200); for (n=1, 200, b=ceil(10^(n/2)); if (n>1, a=b - c, a=4); c=b; write("b062940.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 14 2009

Formula

a(n) = ceiling(sqrt(10^n)) - ceiling(sqrt(10^(n-1))), n > 1.
a(n) = A017934(n) - A017934(n-1) - (-1)^n, n >= 2. - R. J. Mathar, Mar 17 2008

Extensions

Corrected and extended by Dean Hickerson and Jason Earls, Jul 10 2001
Edited by R. J. Mathar, Aug 07 2008
Showing 1-4 of 4 results.