cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229099 Decimal expansion of 1 - 6/Pi^2.

Original entry on oeis.org

3, 9, 2, 0, 7, 2, 8, 9, 8, 1, 4, 5, 9, 7, 3, 3, 7, 1, 3, 3, 6, 7, 2, 3, 2, 2, 0, 7, 4, 1, 6, 3, 4, 1, 6, 6, 5, 7, 3, 8, 4, 7, 3, 5, 1, 9, 6, 6, 5, 2, 0, 7, 0, 6, 9, 2, 6, 3, 4, 5, 8, 0, 8, 6, 3, 4, 9, 6, 1, 2, 7, 4, 2, 2, 6, 5, 8, 7, 3, 5, 2, 8, 5, 2, 7, 4, 4, 3, 5, 6, 4, 4
Offset: 0

Views

Author

Keywords

Comments

Probability that a random number is not squarefree; probability that two random numbers have a common divisor greater than 1.

Examples

			0.39207289814597337133672322074163416657384735196652070692634580863496...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1-1/Zeta[2],10,90][[1]] (* Stefano Spezia, Feb 21 2025 *)
  • PARI
    1-6/Pi^2

Formula

Equals 1 - 1/zeta(2). - Stefano Spezia, Feb 21 2025

A053462 Number of positive squarefree integers less than 10^n.

Original entry on oeis.org

0, 6, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302
Offset: 0

Views

Author

Harvey P. Dale, Aug 01 2001

Keywords

Examples

			There are 608 squarefree integers smaller than 1000.
		

Crossrefs

Apart from first two terms, same as A071172.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009

Programs

  • Mathematica
    a[n_] := Module[{t=10^n-1}, Sum[MoebiusMu[k]Floor[t/k^2], {k, 1, Sqrt[t]}]]
  • PARI
    a(n)=sum(d=1,sqrtint(n=10^n-1), n\d^2*moebius(d)) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(s); forsquarefree(d=1,sqrtint(n=10^n-1), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A053462(n):
        m = 10**n-1
        return sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) # Chai Wah Wu, Jun 01 2024

Formula

a(n)/10^n = (6/Pi^2)*(1+o(1)), cf. A059956.
a(n) = A071172(n) - [n <= 1] where [] is the Iverson bracket. - Chai Wah Wu, Jun 01 2024

Extensions

More terms from Dean Hickerson and Vladeta Jovovic, Aug 06 2001
One more term from Jud McCranie, Sep 01 2005
a(0)=0 and a(14)-a(17) from Gerard P. Michon, Apr 30 2009
a(18)-a(20) from Charles R Greathouse IV, Jan 08 2018

A124580 Where A124579 has two successive identical values.

Original entry on oeis.org

1, 9, 15, 31, 36, 40, 47, 165, 237, 330, 354, 357, 365, 402, 406, 421, 426, 794, 797, 813, 885, 894, 897, 905, 914, 1257, 1281, 1290, 1298, 1301, 1337, 1522, 1526, 1545, 1842, 1865, 2094, 2098, 2118, 2121, 2137, 2569, 3598, 4602, 4609, 4621, 4629, 4726, 4729
Offset: 1

Views

Author

Robert G. Wilson v, Nov 05 2006, Nov 12 2006

Keywords

Comments

Except for a(2), a(5) & a(6) none of these duplicates involve zeros.

Examples

			Interval 10^n . # of -1 ...# of 0 . # of 1 # of terms
............0.........0.........0.........1........1
............1.........4.........3.........3........1
............2........30........39........31........5
............3.......303.......392.......305.......18
............4......3053......3917......3030.......57
............5.....30421.....39206.....30373......189
............6....303857....392074....304069......636
............7...3039127...3920709...3040164.....1176
............8..30395383..39207306..30397311.....4621
............9.303963673.392072876.303963451....15952
		

Crossrefs

Cf. A124579, Column 2 = A063035, Column 1 + Column 3 = A053462.

Programs

  • Mathematica
    p = q = y = z = a = 0; s = {}; Do[ q = Switch[ MoebiusMu@n, -1, y++, 0, z++, 1, a++ ]; If[p == q, AppendTo[s, n - 1]]; p = q, {n, 5000}]; s
Showing 1-3 of 3 results.