cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063108 a(1) = 1; thereafter a(n+1) = a(n) + product of nonzero digits of a(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362
Offset: 1

Views

Author

Paul A. Loomis, Aug 08 2001

Keywords

Comments

Conjecture: no matter what the starting term is, the sequence eventually joins this one. This should be true in any base - base 2, for example, is trivial.
A063114 iterated, beginning with 1. - Reinhard Zumkeller, Jan 15 2012

Examples

			a(2) = 1 + 1 = 2; a(3) = 4; a(6) = 16 + 1*6 = 22; a(22) = 206 + 2*6 = 218.
		

Crossrefs

Programs

  • Haskell
    a063108_list = iterate a063114 1  -- Reinhard Zumkeller, Jan 15 2012
  • Maple
    with transforms;
    f:=proc(n) option remember; if n=1 then 1
    else f(n-1)+digprod(f(n-1)); fi; end;
    [seq(f(n),n=1..20)];
    # N. J. A. Sloane, Oct 12 2013
  • Mathematica
    f[ n_Integer ] := Block[{s = Sort[ IntegerDigits[ n ]]}, While[ s[[ 1 ]] == 0, s = Drop[ s, 1 ]]; n + Times @@ s]; NestList[ f, 1, 65 ]
    nxt[n_]:=n+Times@@Select[IntegerDigits[n],#>0&]; NestList[nxt,1,50] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    lista(n)={ my(a=vector(n)); a[1]=1; for(i=1, #a-1, a[i+1] = a[i] + vecprod(select(x->x, digits(a[i])))); a } \\ Harry J. Smith, Aug 18 2009
    

Formula

A crude heuristic analysis suggests that a(n) grows roughly like (8/9 * (1-y))^(1/(1-y)) * n^(1/1-y) where y = log_10(4.5), i.e., that a(n) ~ 0.033591*n^2.8836.

Extensions

More terms from Robert G. Wilson v, Aug 09 2001

A063114 a(n) = n + product of the nonzero digits of n.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 22, 23, 26, 29, 32, 35, 38, 41, 44, 47, 33, 34, 38, 42, 46, 50, 54, 58, 62, 66, 44, 45, 50, 55, 60, 65, 70, 75, 80, 85, 55, 56, 62, 68, 74, 80, 86, 92, 98, 104, 66, 67, 74, 81, 88, 95, 102, 109, 116
Offset: 1

Views

Author

N. J. A. Sloane, Aug 08 2001

Keywords

Examples

			a(59) = 59 + 5*9 = 104. a(66) = 66 + 6*6 = 102.
		

Crossrefs

Programs

  • ARIBAS
    var stk: stack; end; for n := 1 to 80 do s := itoa(n); for j := 0 to length(s) -1 do k := atoi(s[j..j]); if k > 0 then stack_push(stk,k); end; end; write(n + product(stack2array(stk))," "); end;
    
  • Haskell
    a063114 n = n + a051801 n -- Reinhard Zumkeller, Jan 15 2012
  • Mathematica
    Table[i+Times@@(IntegerDigits[i]/. 0->1), {i, 70}]
  • PARI
    a(n) = n + vecprod(select(x->(x!=0), digits(n))) \\ Harry J. Smith, Aug 19 2009
    

Formula

a(n) = n + A051801(n). - Reinhard Zumkeller, Jan 15 2012

Extensions

More terms from Robert G. Wilson v and Klaus Brockhaus, Aug 09 2001

A063113 a(1) = 1; a(n+1) = a(n) + product of nonzero digits of a(n) when written in base 3. But display sequence in base 10.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 11, 13, 14, 16, 18, 20, 24, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 45, 47, 51, 55, 57, 59, 63, 65, 69, 73, 77, 85, 86, 88, 90, 91, 92, 94, 95, 97, 99, 101, 105, 109, 110, 112, 113, 115, 117, 118, 119, 121, 122, 124, 126, 128, 132, 136, 138
Offset: 1

Views

Author

N. J. A. Sloane, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := (a = Sort[ IntegerDigits[n, 3]]; While[ a[[1]] == 0, a = Delete[a, 1]]; n + Apply[ Times, a] ); NestList[f, 1, 65]
  • PARI
    baseE(x, b)= { local(d,e,f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
    ProdNzD(x)= { local(d,p); p=1; while (x>9, d=x-10*(x\10); if (d, p*=d); x\=10); return(p*x) }
    { for (n=1, 1000, if (n>1, a=baseE(b+= ProdNzD(a), 3), a=1; b=1); write("b063113.txt", n, " ", b) ) } \\ Harry J. Smith, Aug 19 2009

Extensions

More terms from Robert G. Wilson v, Aug 09 2001
Showing 1-3 of 3 results.