cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A063425 Unattainable numbers: integers not expressible as k + product of nonzero digits of k (A063114).

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 19, 21, 25, 27, 30, 31, 36, 37, 39, 40, 43, 48, 49, 51, 52, 53, 57, 59, 61, 63, 64, 69, 71, 72, 73, 76, 79, 82, 83, 84, 87, 90, 91, 93, 96, 97, 103, 105, 113, 115, 117, 119, 121, 127, 131, 136, 137, 139, 148, 149, 151, 153, 157, 159, 163, 164
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {200}]; Do[ a = f[n]; If[a < 200, t[[a]]++ ], {n, 200}]; Select[ Range[ 200], t[[ # ]] == 0 &] (* Robert G. Wilson v, Jul 16 2004 *)

A063108 a(1) = 1; thereafter a(n+1) = a(n) + product of nonzero digits of a(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362
Offset: 1

Views

Author

Paul A. Loomis, Aug 08 2001

Keywords

Comments

Conjecture: no matter what the starting term is, the sequence eventually joins this one. This should be true in any base - base 2, for example, is trivial.
A063114 iterated, beginning with 1. - Reinhard Zumkeller, Jan 15 2012

Examples

			a(2) = 1 + 1 = 2; a(3) = 4; a(6) = 16 + 1*6 = 22; a(22) = 206 + 2*6 = 218.
		

Crossrefs

Programs

  • Haskell
    a063108_list = iterate a063114 1  -- Reinhard Zumkeller, Jan 15 2012
  • Maple
    with transforms;
    f:=proc(n) option remember; if n=1 then 1
    else f(n-1)+digprod(f(n-1)); fi; end;
    [seq(f(n),n=1..20)];
    # N. J. A. Sloane, Oct 12 2013
  • Mathematica
    f[ n_Integer ] := Block[{s = Sort[ IntegerDigits[ n ]]}, While[ s[[ 1 ]] == 0, s = Drop[ s, 1 ]]; n + Times @@ s]; NestList[ f, 1, 65 ]
    nxt[n_]:=n+Times@@Select[IntegerDigits[n],#>0&]; NestList[nxt,1,50] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    lista(n)={ my(a=vector(n)); a[1]=1; for(i=1, #a-1, a[i+1] = a[i] + vecprod(select(x->x, digits(a[i])))); a } \\ Harry J. Smith, Aug 18 2009
    

Formula

A crude heuristic analysis suggests that a(n) grows roughly like (8/9 * (1-y))^(1/(1-y)) * n^(1/1-y) where y = log_10(4.5), i.e., that a(n) ~ 0.033591*n^2.8836.

Extensions

More terms from Robert G. Wilson v, Aug 09 2001

A096922 Numbers n for which there is a unique k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 20, 23, 24, 28, 29, 32, 33, 34, 35, 41, 42, 45, 46, 47, 54, 56, 58, 60, 65, 67, 68, 70, 75, 77, 78, 81, 85, 89, 92, 94, 95, 99, 100, 101, 106, 107, 108, 109, 111, 124, 125, 128, 129, 130, 132, 133, 135, 140, 141, 143, 145, 146, 147, 152, 154, 156, 158
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			21 is the unique k such that k + (product of nonzero digits of k) = 23, hence 23 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {200}]; Do[ a = f[n]; If[a < 200, t[[a]]++ ], {n, 200}]; Select[ Range[ 200], t[[ # ]] == 1 &] (* Robert G. Wilson v, Jul 16 2004 *)
  • PARI
    addpnd(n)=local(k,s,d);k=n;s=1;while(k>0,d=divrem(k,10);k=d[1];s=s*max(1,d[2]));n+s
    {c=1;z=160;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))}

A230099 a(n) = n + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 70, 78, 86, 94, 102, 110, 118, 126
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

A230099, A063114, A098736, A230101 are analogs of A092391 and A062028.

Crossrefs

Programs

  • Haskell
    a230099 n = a007954 n + n  -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    with transforms; [seq(n+digprod(n), n=0..200)];
  • PARI
    a(n) = if (n, n + vecprod(digits(n)), 0); \\ Michel Marcus, Dec 18 2018
    
  • Python
    from math import prod
    def a(n): return n + prod(map(int, str(n)))
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n iff n contains a digit 0 (A011540). - Bernard Schott, Jul 31 2023

A096931 Numbers n for which there are exactly ten k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

1011098, 2102125, 2411305, 2711105, 4012055, 4042055, 4086725, 4101455, 4105555, 4132755, 4310145, 6021254, 6621256, 8012765, 8013495, 8111255, 8202555, 9012405, 9302165, 10011116, 10111014, 10113255, 11011098, 12102125
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			965738, 978842, 988058, 991658, 1009397, 1010874, 1010936, 1010972, 1011058 and 1011082 are the only ten k such that k + (product of nonzero digits of k) = 1011098, hence 1011098 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {12500000}]; Do[ a = f[n]; If[a < 12500000, t[[a]]++ ], {n, 12500000}]; Do[ If[ t[[n]] == 10, Print[n]], {n, 12500000}] (* Robert G. Wilson v, Jul 16 2004 *)
  • PARI
    {c=10;z=3000000;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

Extensions

More terms from Robert G. Wilson v, Jul 16 2004

A096926 Numbers n for which there are exactly five k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

1098, 1126, 1180, 1272, 1474, 1546, 1564, 2014, 2125, 2418, 3180, 3230, 3442, 5222, 5358, 5640, 6245, 7185, 7666, 8155, 8173, 8412, 9214, 9229, 9450, 9518, 10074, 10102, 10110, 10134, 10212, 10228, 10355, 10445, 10455, 10474, 10546, 10827
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			937, 982, 1077, 1118 and 1122 are the only five k such that k + (product of nonzero digits of k) = 1126, hence 1126 is a term.
		

Crossrefs

Programs

  • PARI
    {c=5;z=11000;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

A096924 Numbers n for which there are exactly three k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

102, 110, 118, 126, 134, 150, 180, 202, 216, 225, 234, 260, 272, 312, 338, 366, 404, 414, 420, 455, 456, 512, 534, 542, 564, 576, 586, 635, 645, 712, 734, 750, 786, 808, 818, 827, 837, 840, 894, 920, 939, 970, 980, 1018, 1020, 1034, 1042, 1072, 1074, 1075
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			76, 109 and 114 are the only three k such that k + (product of nonzero digits of k) = 118, hence 118 is a term.
		

Crossrefs

Programs

  • PARI
    {c=3;z=1100;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

A096925 Numbers n for which there are exactly four k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

116, 405, 430, 474, 530, 546, 642, 744, 774, 836, 854, 855, 930, 958, 1038, 1055, 1070, 1088, 1104, 1110, 1116, 1134, 1154, 1162, 1236, 1366, 1400, 1405, 1418, 1430, 1455, 1530, 1642, 1744, 1774, 1836, 1854, 1855, 1930, 1958, 2112, 2137, 2185, 2199, 2205
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			279, 345, 381 and 401 are the only four k such that k + (product of nonzero digits of k) = 405, hence 405 is a term.
		

Crossrefs

Programs

  • Mathematica
    Take[Select[Tally[Table[k+Times@@(IntegerDigits[k]/.(0->1)),{k,100000}]],#[[2]] == 4&][[All,1]]//Sort,50] (* Harvey P. Dale, Oct 12 2022 *)
  • PARI
    {c=4;z=2210;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

A096927 Numbers n for which there are exactly six k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

2072, 3525, 9170, 9190, 11098, 11116, 11474, 11564, 12072, 12125, 13525, 19170, 19190, 20165, 20228, 20445, 21125, 24305, 29395, 30488, 31105, 31255, 31305, 31825, 40339, 40344, 40455, 41255, 42355, 45555, 50745, 51175, 54742, 58300
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			1688, 1928, 1991, 2036, 2052 and 2060 are the only six k such that k + (product of nonzero digits of k) = 2072, hence 2072 is a term.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=60000},Select[Tally[Table[n+Times@@(IntegerDigits[n]/.(0->1)),{n,nn}]],#[[2]]==6&&#[[1]]<=nn&]][[All,1]]//Sort(* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    {c=6;z=60000;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922

A096928 Numbers n for which there are exactly seven k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

1014, 8305, 18305, 26425, 30205, 30725, 31414, 39186, 41156, 51358, 71110, 71136, 72505, 74470, 80305, 82765, 90985, 100405, 100786, 100855, 101014, 101098, 101126, 102072, 110474, 112418, 118305, 126425, 130205, 130725, 131414, 139186
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			678, 854, 933, 942, 960, 1007 and 1012 are the only seven k such that k + (product of nonzero digits of k) = 1014, hence 1014 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Tally[Table[n+Times@@Select[IntegerDigits[n],#!=0&],{n,200000}]], #[[2]] == 7&][[All,1]]//Sort (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    {c=7;z=140000;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))} \\for function addpnd see A096922
Showing 1-10 of 21 results. Next