cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A153860 Triangle by columns: leftmost column = (1, 0, 1, -1, 1, -1, 1, ...); columns >1 = (1, 1, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, -1, 0, 1, 1, 1, 0, 0, 1, 1, -1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 03 2009

Keywords

Comments

As an infinite lower triangular matrix M; M * [1,2,3,...] = A063210: (1, 2, 6, 6, 10, 10, 14, 14, ...).
M * [1, 3, 5, 7, ...] = A047471, {1,3} mod 8.
Eigensequence of the triangle = A066983 starting (1, 1, 3, 3, 7, 9, 17, 25, ...).
Binomial transform of the triangle = A153861.
Row sums = A153284: (1, 1, 3, 1, 3, 1, 3, 1, ...).

Examples

			First few rows of the triangle:
   1;
   0, 1;
   1, 1, 1;
  -1, 0, 1, 1;
   1, 0, 0, 1, 1;
  -1, 0, 0, 0, 1, 1;
   1, 0, 0, 0, 0, 1, 1;
  -1, 0, 0, 0, 0, 0, 1, 1;
   1, 0, 0, 0, 0, 0, 0, 1, 1;
  ...
		

Crossrefs

Cf. A153861 (binomial transform), A153284 (row sums), A063210, A047471, A066983.

Programs

  • Haskell
    a153860 n k = a153860_tabl !! (n-1) !! (k-1)
    a153860_row n = a153860_tabl !! (n-1)
    a153860_tabl = [1] : [0, 1] : iterate (\(x:xs) -> -x : 0 : xs) [1, 1, 1]
    -- Reinhard Zumkeller, Dec 16 2013

Formula

Triangle by columns: leftmost column = (1, 0, 1, -1, 1, ...); columns > 1 = (1, 1, 0, 0, 0, ...).

A168276 a(n) = 2*n - (-1)^n - 1.

Original entry on oeis.org

2, 2, 6, 6, 10, 10, 14, 14, 18, 18, 22, 22, 26, 26, 30, 30, 34, 34, 38, 38, 42, 42, 46, 46, 50, 50, 54, 54, 58, 58, 62, 62, 66, 66, 70, 70, 74, 74, 78, 78, 82, 82, 86, 86, 90, 90, 94, 94, 98, 98, 102, 102, 106, 106, 110, 110, 114, 114, 118, 118, 122, 122, 126, 126, 130, 130
Offset: 1

Views

Author

Vincenzo Librandi, Nov 22 2009

Keywords

Crossrefs

Cf. A063210. - R. J. Mathar, Nov 25 2009

Programs

  • Magma
    [2*n-1-(-1)^n: n in [1..70]]; // Vincenzo Librandi, Sep 16 2013
  • Mathematica
    CoefficientList[Series[2 (1 + x^2) / ((1 + x) (1 - x)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 16 2013 *)
    Table[2 n - 1 - (-1)^n, {n, 70}] (* Bruno Berselli, Sep 17 2013 *)
    LinearRecurrence[{1,1,-1},{2,2,6},70] (* Harvey P. Dale, Oct 22 2014 *)

Formula

a(n) = 4*n - a(n-1) - 4, with n>1, a(1)=2.
from R. J. Mathar, Nov 25 2009: (Start)
a(n) = 2*n - (-1)^n - 1.
a(n) = 2*A109613(n-1).
G.f.: 2*x*(1 + x^2)/((1+x)*(1-x)^2). (End)
a(n) = a(n-1) + a(n-2) - a(n-3). - Vincenzo Librandi, Sep 16 2013
a(n) = A168277(n) + 1. - Vincenzo Librandi, Sep 17 2013
E.g.f.: (-1 + 2*exp(x) + (2*x -1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016
Sum_{n>=1} 1/a(n)^2 = Pi^2/16. - Amiram Eldar, Aug 21 2022

Extensions

Previous definition replaced with closed-form expression by Bruno Berselli, Sep 17 2013
Showing 1-2 of 2 results.