cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063419 Central sextinomial coefficients.

Original entry on oeis.org

1, 6, 146, 4332, 135954, 4395456, 144840476, 4836766584, 163112472594, 5542414273884, 189456975899496, 6507792553644256, 224442843729333276, 7766945604528200460, 269557528994032024080, 9378595792117360310832
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Comments

Largest coefficient of (Sum_{j=0..5} x^j)^(2*n). a(n)= A018901(2*n).
The exponent of 2 in prime factorization of a(n) for n=1,2,...,7 is in A023520. - Roman Witula, Oct 07 2012
Central coefficients in triangle A063260. - Zagros Lalo, Sep 25 2018

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 605, 606.
  • R. Witula and D. Slota, Central trinomial coefficients and convolution type identities, Congressus Numerantium 201 (2010), 109-126.

Crossrefs

Central q-nomial coefficients (appearing once) for q=2..5: A000984, A002426, A005721, A005191. For q=7: A025012.
Cf. A063260.

Programs

  • GAP
    Concatenation([1],List([1..15],n->Sum([0..Int(5*n/6)],k->(-1)^k*Binomial(2*n,k)*Binomial(7*n-6*k-1,2*n-1)))); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    Table[Sum[(-1)^k*Binomial[2*n, k]*Binomial[7*n - 6*k - 1, 2*n - 1], {k, 0, Floor[5*n/6]}], {n, 0, 50}] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    concat([1], for(n=1,25, print1(sum(k=0,floor(5*n/6),(-1)^(k)*binomial(2*n,k)* binomial(7*n-6*k-1, 2*n-1)), ", "))) \\ G. C. Greubel, Mar 02 2017
    

Formula

a(n) = A063260(2*n, 5*n)= [x^(5*n)](Sum_{j=0..5} x^j)^(2*n).
a(n) = Sum_{k=0..floor(5*n/6)} ((-1)^(k)*binomial(2*n,k)*binomial(7*n-6*k-1, 2*n-1)). - Warut Roonguthai, May 22 2006
2*Pi*a(n) = Integral[-Pi;Pi] (sin(6*x)/sin(x))^(2*n) dx. The proof of this fact is in the Witula/Slota paper. - Roman Witula, Oct 07 2012
The Almkvist-Zeilberger algorithm in EKHAD establishes the following recurrence: -31104*(2*n+5)*(2*n+3)*(2*n+1)*(7*n+19)*(5*n+11)*(7*n+20)*(7*n+13)*(n+2)*(n+1)*a(n)+ 864*(7*n+20)*(2*n+5)*(2*n+3)*(n+2)*(25480*n^5+ 223496*n^4+755066*n^3+1223233*n^2+946889*n+279936)*a(n+1)- 6*(5*n+6)*(2*n+5)*(7*n+6)*(499359*n^6+ 6777015*n^5+38079431*n^4+113390385*n^3+18872398*n^2+ 166469280*n+60800544)*a(n+2)+ 5*(5*n+14)*(5*n+13)*(5*n+12)*(7*n+12)*(5*n+11)*(5*n+6)*(7*n+13)*(7*n+6)*(n+3)*a(n+3) = 0. - Doron Zeilberger, Apr 02 2013
a(n) ~ sqrt(3) * 36^n / sqrt(35*Pi*n). - Vaclav Kotesovec, Dec 09 2021