cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063436 Write 1, 2, 3, 4, ... counterclockwise in a hexagonal spiral around 0 starting left down, then a(n) is the sequence found by reading from 0 in the vertical upward direction.

Original entry on oeis.org

0, 15, 54, 117, 204, 315, 450, 609, 792, 999, 1230, 1485, 1764, 2067, 2394, 2745, 3120, 3519, 3942, 4389, 4860, 5355, 5874, 6417, 6984, 7575, 8190, 8829, 9492, 10179, 10890, 11625, 12384, 13167, 13974, 14805, 15660, 16539, 17442, 18369, 19320, 20295, 21294, 22317
Offset: 0

Views

Author

Floor van Lamoen, Jul 21 2001

Keywords

Comments

Related to parity of Beatty sequences for exp(-(1/2)/n). Let f(k,n)=-sum(i=1,n,sum(j=1,i,(-1)^floor(j*exp(-(1/2)/n)))), then a(n)=Max{f(k,n) : 1<=k<=4*a(n)-2} and for 0<=i<=4*a(n)-3, f(i,n)=f(4*a(n)-2-i,n). - Benoit Cloitre, May 26 2004
Or, sum of multiples of 2 and 3 from 0 to 6*n. - Zak Seidov, Aug 06 2016

Examples

			The spiral begins:
.
        16--15--14
        /         \
      17   5---4  13
      /   /     \   \
    18   6   0   3  12
    /   /   /   /   /
  19   7   1---2  11  26
    \   \         /   /
    20   8---9--10  25
      \             /
      21--22--23--24
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 3*n*(4*n + 1); Array[a, 40, 0] (* Amiram Eldar, Mar 27 2022 *)
  • PARI
    { for (n=0, 1000, write("b063436.txt", n, " ", n*(12*n + 3)) ) } \\ Harry J. Smith, Aug 21 2009

Formula

a(n) = 3*n*(4*n+1) = 3*A007742(n).
a(n) = 24*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Colin Barker, Jul 07 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 3*x*(5 + 3*x)/(1-x)^3. (End)
a(n) = A272399(n+1) - A003154(n+1). - Leo Tavares, Mar 24 2022
From Amiram Eldar, Mar 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 4/3 - Pi/6 - log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(2)) + log(2)/3 + sqrt(2)*log(sqrt(2)+1)/3 - 4/3. (End)
E.g.f.: 3*x*(5 + 4*x)*exp(x). - Elmo R. Oliveira, Oct 31 2024