cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063447 Continued fraction for Pi * sqrt(2).

Original entry on oeis.org

4, 2, 3, 1, 7, 7, 1, 3, 1, 1, 1, 1, 4, 10, 8, 1, 2, 3, 3, 2, 5, 8, 6, 14, 1, 9, 1, 1, 1, 2, 6, 2, 2, 4, 3, 2, 2, 6, 1, 12, 1, 35, 32, 1, 3, 5, 15, 1, 2, 1, 6, 1, 2, 1, 1, 2, 16, 6, 1, 7, 1, 2, 2, 1, 2, 1, 1, 27, 3, 6, 4, 26, 2, 1, 31, 2, 1, 1, 12, 1, 1, 2, 2, 1, 24, 5, 2, 591, 6, 33, 1, 8, 1, 2, 6, 2
Offset: 0

Views

Author

Jason Earls, Jul 24 2001

Keywords

Examples

			4.442882938158366247015880990... = 4 + 1/(2 + 1/(3 + 1/(1 + 1/(7 + ...))))
		

Crossrefs

Cf. A063448 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(150)); R:= RealField(); ContinuedFraction(Pi(R)*Sqrt(2)); // G. C. Greubel, Aug 16 2018
  • Mathematica
    ContinuedFraction[Pi*Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 21 2011*)
  • PARI
    contfrac(Pi*sqrt(2))
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*sqrt(2)); for (n=1, 20000, write("b063447.txt", n-1, " ", x[n])) \\ Harry J. Smith, Aug 21 2009
    

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024