A063488 a(n) = (2*n-1)*(n^2 -n +2)/2.
1, 6, 20, 49, 99, 176, 286, 435, 629, 874, 1176, 1541, 1975, 2484, 3074, 3751, 4521, 5390, 6364, 7449, 8651, 9976, 11430, 13019, 14749, 16626, 18656, 20845, 23199, 25724, 28426, 31311, 34385, 37654, 41124, 44801, 48691, 52800, 57134, 61699, 66501, 71546, 76840
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n-1)*(n^2 -n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Mathematica
Table[(2 n - 1) (n^2 - n + 2)/2, {n, 1, 40}] (* Bruno Berselli, Oct 14 2016 *) LinearRecurrence[{4,-6,4,-1}, {1,6,20,49}, 50] (* G. C. Greubel, Dec 01 2017 *)
-
PARI
a(n) = { (2*n - 1)*(n^2 - n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
-
PARI
my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
Formula
G.f.: (1 + x)*(1 + x + x^2)/(1 - x)^4. - Jaume Oliver Lafont, Aug 30 2009
E.g.f.: (-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017
Comments