cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063488 a(n) = (2*n-1)*(n^2 -n +2)/2.

Original entry on oeis.org

1, 6, 20, 49, 99, 176, 286, 435, 629, 874, 1176, 1541, 1975, 2484, 3074, 3751, 4521, 5390, 6364, 7449, 8651, 9976, 11430, 13019, 14749, 16626, 18656, 20845, 23199, 25724, 28426, 31311, 34385, 37654, 41124, 44801, 48691, 52800, 57134, 61699, 66501, 71546, 76840
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

Sum of two consecutive terms of A006003(n) = n*(n^2+1)/2. a(n) = A006003(n-1) + A006003(n). - Alexander Adamchuk, Jun 03 2006
If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007

Crossrefs

1/12*t*n*(2*n^2 - 3*n + 1) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005918.

Programs

  • Magma
    [(2*n-1)*(n^2 -n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
  • Mathematica
    Table[(2 n - 1) (n^2 - n + 2)/2, {n, 1, 40}] (* Bruno Berselli, Oct 14 2016 *)
    LinearRecurrence[{4,-6,4,-1}, {1,6,20,49}, 50] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(n^2 - n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: (1 + x)*(1 + x + x^2)/(1 - x)^4. - Jaume Oliver Lafont, Aug 30 2009
a(n) = A000217(A000217(n)) - A000217(A000217(n-2)). - Bruno Berselli, Oct 14 2016
E.g.f.: (-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017