A063492 a(n) = (2*n - 1)*(11*n^2 - 11*n + 6)/6.
1, 14, 60, 161, 339, 616, 1014, 1555, 2261, 3154, 4256, 5589, 7175, 9036, 11194, 13671, 16489, 19670, 23236, 27209, 31611, 36464, 41790, 47611, 53949, 60826, 68264, 76285, 84911, 94164, 104066, 114639, 125905, 137886, 150604, 164081, 178339, 193400, 209286, 226019
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n-1)*(11*n^2-11*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
-
Maple
A063492:=n->(2*n - 1)*(11*n^2 - 11*n + 6)/6: seq(A063492(n), n=1..50); # Wesley Ivan Hurt, Dec 16 2015
-
Mathematica
Table[(2*n-1)*(11*n^2-11*n+6)/6, {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 18 2008 *) LinearRecurrence[{4, -6, 4, -1}, {1, 14, 60, 161}, 40] (* Vincenzo Librandi, Dec 16 2015 *)
-
PARI
a(n) = { (2*n - 1)*(11*n^2 - 11*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
-
PARI
Vec(x*(1+x)*(1+9*x+x^2)/(1-x)^4 + O(x^100)) \\ Altug Alkan, Dec 16 2015
-
Python
A063492_list, m = [], [22, -11, 2, 1] for _ in range(10**2): A063492_list.append(m[-1]) for i in range(3): m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
Formula
G.f.: x*(1+x)*(1 + 9*x + x^2)/(1-x)^4. - Colin Barker, Apr 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Dec 16 2015
E.g.f.: (-6 + 12*x + 33*x^2 + 22*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017