A063524 Characteristic function of 1.
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 30.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..100000
- G. P. Michon, Multiplicative Functions
- Wikipedia, Dirichlet convolution
- Index entries for sequences computed from exponents in factorization of n
- Index entries for linear recurrences with constant coefficients, signature (1).
- Index entries for characteristic functions
Crossrefs
Programs
-
Haskell
a063524 = fromEnum . (== 1) -- Reinhard Zumkeller, Apr 01 2012
-
Maple
A063524 := proc(n) if n = 1 then 1 else 0; fi; end;
-
Mathematica
Table[If[n == 1, 1, 0], {n, 0, 104}] (* Robert G. Wilson v, Sep 30 2006 *) LinearRecurrence[{1},{0,1,0},106] (* Ray Chandler, Jul 15 2015 *)
-
PARI
a(n)=n==1; \\ Charles R Greathouse IV, Apr 01 2012
-
Python
def A063524(n): return int(n==1) # Chai Wah Wu, Feb 04 2022
Formula
From Philippe Deléham, Nov 25 2008: (Start)
G.f.: x.
E.g.f.: x. (End)
a(n) = mu(n^2). - Enrique Pérez Herrero, Sep 04 2009
a(n) = floor(n/A000203(n)) for n > 0. - Enrique Pérez Herrero, Nov 11 2009
a(n) = (1-(-1)^(2^abs(n-1)))/2 = (1-(-1)^(2^((n-1)^2)))/2. - Luce ETIENNE, Jun 05 2015
From Antti Karttunen, Jun 04 2022: (Start)
For n >= 1:
a(n) = Sum_{d|n} A000010(n/d) * A023900(d), and similarly for any pair of sequences that are Dirichlet inverses of each other, like for example A000027 & A055615 and those mentioned in Krizek's Mar 03 2009 comment above.
a(n) = [A101296(n) == 1], where [ ] is the Iverson bracket.
Fully multiplicative with a(p^e) = 0. (End)
Comments