cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063637 Primes p such that p+2 is a semiprime.

Original entry on oeis.org

2, 7, 13, 19, 23, 31, 37, 47, 53, 67, 83, 89, 109, 113, 127, 131, 139, 157, 167, 181, 199, 211, 233, 251, 257, 263, 293, 307, 317, 337, 353, 359, 379, 389, 401, 409, 443, 449, 467, 479, 487, 491, 499, 503, 509, 541, 557, 563, 571, 577, 587, 631, 647, 653, 677
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Primes of the form p*q - 2, where p and q are primes.
Union of A049002 and A115093. - T. D. Noe, Mar 01 2006

Examples

			From _K. D. Bajpai_, Sep 06 2014: (Start)
a(3) = 13, which is prime, and 13 + 2 = 15 = 3 * 5, which is a semiprime.
a(4) = 19, which is prime, and 19 + 2 = 21 = 3 * 7, which is a semiprime.
(End)
		

References

  • J.-R. Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16 (1973), 157-176.

Crossrefs

Cf. A109611 (Chen primes).

Programs

  • Haskell
    a063637 n = a063637_list !!(n-1)
    a063637_list = filter ((== 1) . a064911 . (+ 2)) a000040_list
    -- Reinhard Zumkeller, Nov 15 2011
  • Maple
    select(t -> isprime(t) and numtheory:-bigomega(t+2)=2, [2, seq(2*i+1,i=1..500)]); # Robert Israel, Sep 07 2014
  • Mathematica
    f[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[ n]]; Select[ Prime[ Range[ 123]], f[ # + 2] == 2 &] (* Robert G. Wilson v, Apr 30 2005 *)
    Select[Prime[Range[500]],PrimeOmega[#+2]==2&]  (* K. D. Bajpai, Sep 06 2014 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p + 2) == 2, write("b063637.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 26 2009
    

Formula

a(n) = A062721(n) - 2.
A010051(a(n)) * A064911(a(n) + 2) = 1. - Reinhard Zumkeller, Nov 15 2011