cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063640 Primes of form p*q*r + 1, where p, q and r are primes.

Original entry on oeis.org

13, 19, 29, 31, 43, 53, 67, 71, 79, 103, 131, 139, 149, 173, 191, 223, 239, 269, 283, 293, 311, 317, 367, 389, 419, 431, 439, 443, 499, 509, 557, 599, 607, 619, 643, 647, 653, 659, 683, 743, 773, 787, 797, 823, 827, 907, 947, 971, 1031, 1039, 1087, 1091
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Odd primes p such that (p-1)/2 is a semiprime. - Robert G. Wilson v, Sep 01 2007

Crossrefs

A090866 is a subsequence.

Programs

  • Maple
    q:= n-> isprime(n) and numtheory[bigomega](n-1)=3:
    select(q, [$2..1100])[];  # Alois P. Heinz, Mar 08 2023
  • Mathematica
    Take[ Select[ Union@ Flatten@ Table[ Prime@p*Prime@q*Prime@r + 1, {p, 48}, {q, p}, {r, q}], PrimeQ@ # &], 53] (* Or *)
    semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger[x] == 2; Select[Prime@ Range@ 182, semiPrimeQ[(# - 1)/2] &] (* Robert G. Wilson v, Sep 01 2007 *)
    2#+1&/@Select[Table[(n-1)/2,{n,Prime[Range[200]]}],PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 11 2018 *)
  • PARI
    n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p - 1) == 3, write("b063640.txt", n++, " ", p); if (n==1000, break)) )  \\ Harry J. Smith, Aug 26 2009