cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A063639 Primes of the form p*q*r - 1, where p, q and r are primes (not necessarily distinct).

Original entry on oeis.org

7, 11, 17, 19, 29, 41, 43, 67, 97, 101, 109, 113, 137, 163, 173, 181, 211, 229, 241, 257, 281, 283, 317, 331, 337, 353, 373, 401, 409, 433, 523, 547, 577, 601, 617, 641, 653, 677, 691, 709, 761, 787, 821, 829, 853, 907, 937, 941, 977, 1009, 1021, 1033, 1051
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Crossrefs

Programs

  • Haskell
    a063639 n = a063639_list !! (n-1)
    a063639_list = [p | p <- a000040_list, a001222 (p+1) == 3]
    -- Reinhard Zumkeller, Feb 04 2012
  • Mathematica
    Take[Select[Union[Times@@#-1&/@Tuples[Prime[Range[60]],3]],PrimeQ],60] (* Harvey P. Dale, Jan 23 2012 *)
  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p + 1) == 3, write("b063639.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 26 2009
    

A063644 Primes with 2 representations: p*q*r - 1 = u*v*w + 1 where p, q, r, u, v and w are primes.

Original entry on oeis.org

19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187, 17827
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Also, primes sandwiched by 3-almost primes. Primes p such that p-+1 are 3-almost primes (A014612). - Zak Seidov, Jul 06 2015

Examples

			4723 is a term because 4723 = A063639(168)= 4724 - 1 = 2*2*1181 - 1, and because 4723 = A063640(158)= 4722 + 1 = 2*3*787 + 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000]], 3 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &] (* Vincenzo Librandi, Jul 07 2015 *)
  • PARI
    n=0; default(primelimit, 2000000); for (m=2, 10^9, p=prime(m); if (bigomega(p + 1) == 3 && bigomega(p - 1) == 3, write("b063644.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 27 2009
    
  • PARI
    list(lim)=my(v=List(),u=v,L=(lim+1)\2,t); forprime(p=2,L\2, forprime(q=2,min(p,L\p), listput(u,p*q))); u=Set(u); for(i=2,#u, if(u[i]-u[i-1]==1 && isprime(t=2*u[i]-1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jan 31 2017

A063642 Primes of form p*q*r + 2, where p, q and r are primes (not necessarily distinct).

Original entry on oeis.org

29, 47, 101, 107, 127, 149, 167, 173, 197, 233, 257, 263, 277, 281, 347, 359, 389, 401, 431, 457, 467, 479, 509, 541, 557, 563, 577, 607, 617, 641, 647, 653, 659, 727, 743, 761, 797, 863, 887, 911, 929, 937, 971, 983, 1019, 1087, 1097, 1129, 1181, 1187
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=50},Take[Select[Times@@@Tuples[Prime[Range[nn]],3]+2,PrimeQ]// Union,nn]] (* Harvey P. Dale, Jan 21 2021 *)
  • PARI
    { n=0; for (m=2, 10^9, p=prime(m); if (bigomega(p - 2) == 3, write("b063642.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 26 2009

A367947 Semiprimes s such that 2*s+1 is prime.

Original entry on oeis.org

6, 9, 14, 15, 21, 26, 33, 35, 39, 51, 65, 69, 74, 86, 95, 111, 119, 134, 141, 146, 155, 158, 183, 194, 209, 215, 219, 221, 249, 254, 278, 299, 303, 309, 321, 323, 326, 329, 341, 371, 386, 393, 398, 411, 413, 453, 473, 485, 515, 519, 543, 545, 551, 554, 581, 611, 614
Offset: 1

Views

Author

Alexandre Herrera, Dec 05 2023

Keywords

Crossrefs

Intersection of A001358 and A005097.
Cf. A063640.

Programs

  • PARI
    isok(s) = (bigomega(s)==2) && isprime(2*s+1); \\ Michel Marcus, Dec 06 2023
  • Python
    import sympy as sp
    l = []
    for i in range(620):
        if (sum(sp.factorint(i).values()) == 2) and sp.isprime(2*i+1):
            l.append(i)
    print(l)
    

Formula

a(n) = (A063640(n) - 1)/2. - Hugo Pfoertner, Dec 05 2023
Showing 1-4 of 4 results.