cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063640 Primes of form p*q*r + 1, where p, q and r are primes.

Original entry on oeis.org

13, 19, 29, 31, 43, 53, 67, 71, 79, 103, 131, 139, 149, 173, 191, 223, 239, 269, 283, 293, 311, 317, 367, 389, 419, 431, 439, 443, 499, 509, 557, 599, 607, 619, 643, 647, 653, 659, 683, 743, 773, 787, 797, 823, 827, 907, 947, 971, 1031, 1039, 1087, 1091
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Odd primes p such that (p-1)/2 is a semiprime. - Robert G. Wilson v, Sep 01 2007

Crossrefs

A090866 is a subsequence.

Programs

  • Maple
    q:= n-> isprime(n) and numtheory[bigomega](n-1)=3:
    select(q, [$2..1100])[];  # Alois P. Heinz, Mar 08 2023
  • Mathematica
    Take[ Select[ Union@ Flatten@ Table[ Prime@p*Prime@q*Prime@r + 1, {p, 48}, {q, p}, {r, q}], PrimeQ@ # &], 53] (* Or *)
    semiPrimeQ[x_] := Plus @@ Last /@ FactorInteger[x] == 2; Select[Prime@ Range@ 182, semiPrimeQ[(# - 1)/2] &] (* Robert G. Wilson v, Sep 01 2007 *)
    2#+1&/@Select[Table[(n-1)/2,{n,Prime[Range[200]]}],PrimeOmega[#]==2&] (* Harvey P. Dale, Oct 11 2018 *)
  • PARI
    n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p - 1) == 3, write("b063640.txt", n++, " ", p); if (n==1000, break)) )  \\ Harry J. Smith, Aug 26 2009

A063644 Primes with 2 representations: p*q*r - 1 = u*v*w + 1 where p, q, r, u, v and w are primes.

Original entry on oeis.org

19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187, 17827
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Also, primes sandwiched by 3-almost primes. Primes p such that p-+1 are 3-almost primes (A014612). - Zak Seidov, Jul 06 2015

Examples

			4723 is a term because 4723 = A063639(168)= 4724 - 1 = 2*2*1181 - 1, and because 4723 = A063640(158)= 4722 + 1 = 2*3*787 + 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000]], 3 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &] (* Vincenzo Librandi, Jul 07 2015 *)
  • PARI
    n=0; default(primelimit, 2000000); for (m=2, 10^9, p=prime(m); if (bigomega(p + 1) == 3 && bigomega(p - 1) == 3, write("b063644.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 27 2009
    
  • PARI
    list(lim)=my(v=List(),u=v,L=(lim+1)\2,t); forprime(p=2,L\2, forprime(q=2,min(p,L\p), listput(u,p*q))); u=Set(u); for(i=2,#u, if(u[i]-u[i-1]==1 && isprime(t=2*u[i]-1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jan 31 2017

A063641 Primes of form p*q*r - 2, where p, q and r are primes (not necessarily distinct).

Original entry on oeis.org

43, 61, 73, 97, 103, 151, 163, 173, 193, 229, 271, 277, 283, 331, 367, 383, 397, 421, 433, 463, 547, 593, 601, 607, 613, 643, 661, 709, 739, 757, 773, 859, 883, 907, 929, 967, 1013, 1021, 1063, 1093, 1103, 1129, 1171, 1181, 1231, 1237, 1249, 1279, 1307
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Crossrefs

Programs

  • PARI
    { n=0; for (m=1, 10^9, p=prime(m); if (bigomega(p + 2) == 3, write("b063641.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 26 2009

A335652 Numbers k such that Omega(k+1) = Omega(k) + 2, where Omega(k) = A001222(k) is the number of prime factors of k with multiplicity.

Original entry on oeis.org

7, 11, 15, 17, 19, 29, 35, 39, 41, 43, 55, 67, 87, 97, 101, 109, 113, 134, 137, 155, 163, 173, 175, 181, 183, 203, 207, 209, 211, 219, 229, 241, 242, 247, 249, 257, 259, 279, 281, 283, 295, 305, 314, 317, 327, 329, 331, 337, 339, 341, 351, 353, 371, 373, 401, 404, 409, 413, 433, 455
Offset: 1

Views

Author

Zak Seidov, Jun 16 2020

Keywords

Examples

			7 is prime, Omega(7) = 1, 7 + 1 = 8 = 2*2*2, Omega(8) = 3.
		

Crossrefs

Omega(k+1) = Omega(k) + m: A045920 (m = 0), A076156 (m = 1).
Cf. A001222, A335655. Contains A063639.

Programs

A386295 Primes p such that p+1 is a triprime and 2*p+1 is prime.

Original entry on oeis.org

11, 29, 41, 113, 173, 281, 641, 653, 761, 1901, 2273, 2693, 2741, 3413, 3593, 5441, 6053, 6113, 6521, 6581, 7121, 7841, 9293, 9473, 10253, 10733, 12101, 12821, 14081, 14621, 15233, 16493, 19301, 19373, 19553, 19913, 20441, 20693, 21341, 21701, 22433, 24473, 27281, 27581, 27893, 28793, 28901
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Jul 17 2025

Keywords

Comments

Sophie Germain primes of the form p*q*r - 1, where p, q and r are primes.
Except for 11, all terms == 5 (mod 12).

Examples

			a(3) = 41 is a term because it is prime, 41 + 1 = 42 = 2 * 3 * 7 is a triprime, and 41 * 2 + 1 = 83 is prime.
		

Crossrefs

Cf. A014612.
Intersection of A005384 and A063639.

Programs

  • Maple
    select(p -> isprime(p) and isprime(2*p+1) and numtheory:-bigomega(p+1) = 3, [seq(i,i=3..30000,2)]);
  • Mathematica
    s= {}; Do[p = Prime[k]; If[3 == PrimeOmega[p + 1] && PrimeQ[2*p +1], AppendTo[s, p]], {k, 2000}];s
Showing 1-5 of 5 results.