cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063644 Primes with 2 representations: p*q*r - 1 = u*v*w + 1 where p, q, r, u, v and w are primes.

Original entry on oeis.org

19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187, 17827
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2001

Keywords

Comments

Also, primes sandwiched by 3-almost primes. Primes p such that p-+1 are 3-almost primes (A014612). - Zak Seidov, Jul 06 2015

Examples

			4723 is a term because 4723 = A063639(168)= 4724 - 1 = 2*2*1181 - 1, and because 4723 = A063640(158)= 4722 + 1 = 2*3*787 + 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000]], 3 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &] (* Vincenzo Librandi, Jul 07 2015 *)
  • PARI
    n=0; default(primelimit, 2000000); for (m=2, 10^9, p=prime(m); if (bigomega(p + 1) == 3 && bigomega(p - 1) == 3, write("b063644.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 27 2009
    
  • PARI
    list(lim)=my(v=List(),u=v,L=(lim+1)\2,t); forprime(p=2,L\2, forprime(q=2,min(p,L\p), listput(u,p*q))); u=Set(u); for(i=2,#u, if(u[i]-u[i-1]==1 && isprime(t=2*u[i]-1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jan 31 2017