A063644 Primes with 2 representations: p*q*r - 1 = u*v*w + 1 where p, q, r, u, v and w are primes.
19, 29, 43, 67, 173, 283, 317, 653, 787, 907, 1867, 2083, 2693, 2803, 3413, 3643, 3677, 4253, 4363, 4723, 5443, 5717, 6197, 6547, 6653, 8563, 8573, 9067, 9187, 9403, 9643, 10733, 11443, 11587, 12163, 12917, 13997, 14107, 14683, 15187, 17827
Offset: 1
Keywords
Examples
4723 is a term because 4723 = A063639(168)= 4724 - 1 = 2*2*1181 - 1, and because 4723 = A063640(158)= 4722 + 1 = 2*3*787 + 1.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
Programs
-
Mathematica
Select[Prime[Range[3000]], 3 == PrimeOmega[# - 1] == PrimeOmega[# + 1] &] (* Vincenzo Librandi, Jul 07 2015 *)
-
PARI
n=0; default(primelimit, 2000000); for (m=2, 10^9, p=prime(m); if (bigomega(p + 1) == 3 && bigomega(p - 1) == 3, write("b063644.txt", n++, " ", p); if (n==1000, break)) ) \\ Harry J. Smith, Aug 27 2009
-
PARI
list(lim)=my(v=List(),u=v,L=(lim+1)\2,t); forprime(p=2,L\2, forprime(q=2,min(p,L\p), listput(u,p*q))); u=Set(u); for(i=2,#u, if(u[i]-u[i-1]==1 && isprime(t=2*u[i]-1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Jan 31 2017
Comments