cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051258 Fibocyclotomic numbers: numbers formed from cyclotomic polynomials and Fibonacci numbers (A000045).

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 0, 20, 3, 10, 1, 143, 2, 376, 4, 11, 21, 2583, 6, 6764, 15, 74, 33, 46367, 18, 7435, 88, 2618, 104, 832039, 25, 2178308, 987, 3399, 609, 20160, 136, 39088168, 1596, 23228, 861, 267914295, 182, 701408732, 4895, 35920, 10945, 4807526975
Offset: 0

Views

Author

Antti Karttunen, Oct 24 1999

Keywords

Comments

For all primes p, a(p) = fib(p+1)-1 and for all n of the form 2^i*p^j (where p is an odd prime and i >= 0 and j >= 2) fib(p)|a(2^i*p^j).
a(0) depends on how the zeroth cyclotomic polynomial is defined.

Examples

			a(22) = fib(10)-fib(9)+fib(8)-fib(7)+fib(6)-fib(5)+fib(4)-fib(3)+fib(2)-fib(1) = 33 as the 22nd cyclotomic polynomial is x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1 (The constant term does not affect the result, as fib(0)=0.)
		

Crossrefs

Programs

  • Maple
    get_coefficient := proc(e); if(1 = nops(e)) then if(`integer` = op(0,e)) then RETURN(e); else RETURN(1); fi; else if(2 = nops(e)) then if(`*` = op(0,e)) then RETURN(op(1,e)); else RETURN(1); fi; else RETURN(`Cannot find coefficient!`); fi; fi; end;
    get_exponent := proc(e); if((1 = e) or (-1 = e)) then RETURN(0); else if(1 = nops(e)) then RETURN(1); else if(2 = nops(e)) then if(`^` = op(0,e)) then RETURN(op(2,e)); else RETURN(get_exponent(op(2,e))); fi; else RETURN(`Cannot find exponent!`); fi; fi; fi; end;
    fibo_cyclotomic := proc(j) local i,p; p := sort(cyclotomic(j,x)); RETURN(add((get_coefficient(op(i,p))*fibonacci(get_exponent(op(i,p)))),i=1..nops(p))); end;
  • Mathematica
    f[n_]:=Module[{cy=CoefficientList[Cyclotomic[n,x],x]},Total[ Times@@@ Thread[ {Fibonacci[ Range[0, Length[cy]- 1]],cy}]]]; Join[{1},Array[f,50]] (* Harvey P. Dale, Oct 02 2011 *)
  • PARI
    a(n)=my(P=polcyclo(n));sum(i=1,poldegree(P),polcoeff(P,i)*fibonacci(i)) \\ Charles R Greathouse IV, Jan 05 2013

Formula

a(n) = Sum (coefficient_of_term_i_of_cp_n times Fib(exponent_of_term_i_of_cp_n)), i=1..degree of cp_n, where cp_n is the n-th cyclotomic polynomial.

A063704 Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and floored down (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

0, 0, 1, 2, 1, 7, 0, 20, 3, 10, 2, 143, 2, 376, 5, 11, 21, 2583, 6, 6764, 15, 74, 34, 46367, 18, 7435, 89, 2618, 104, 832039, 25, 2178308, 987, 3399, 610, 20160, 136, 39088168, 1597, 23228, 861, 267914295, 182, 701408732, 4895, 35920, 10946, 4807526975
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(floor(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];
  • Mathematica
    Floor[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* Paolo Xausa, Feb 27 2024 *)

Extensions

a(47) corrected by Sean A. Irvine, May 08 2023

A063708 Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and ceiled up (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

1, 1, 2, 3, 2, 8, 1, 21, 4, 11, 3, 144, 3, 377, 6, 12, 22, 2584, 7, 6765, 16, 75, 35, 46368, 19, 7436, 90, 2619, 105, 832040, 26, 2178309, 988, 3400, 611, 20161, 137, 39088169, 1598, 23229, 862, 267914296, 183, 701408733, 4896, 35921, 10947, 4807526976
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(ceil(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];
  • Mathematica
    Ceiling[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* Paolo Xausa, Feb 27 2024 *)

A063705 Cyclotomic polynomials Phi_n at x=phi, rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

2, 1, 3, 5, 4, 16, 2, 45, 8, 23, 5, 320, 5, 841, 11, 26, 48, 5776, 15, 15125, 34, 167, 76, 103680, 41, 16626, 199, 5855, 233, 1860496, 56, 4870845, 2208, 7602, 1364, 45081, 305, 87403801, 3571, 51941, 1926, 599074576, 407, 1568397605, 10946, 80321
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(round(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
  • Mathematica
    Join[{2}, Round[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* Paolo Xausa, Feb 27 2024 *)

Extensions

a(43) corrected by Sean A. Irvine, May 08 2023
Showing 1-4 of 4 results.