cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063841 Table T(n,k) giving number of k-multigraphs on n nodes (n >= 1, k >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 11, 1, 1, 5, 20, 66, 34, 1, 1, 6, 35, 276, 792, 156, 1, 1, 7, 56, 900, 10688, 25506, 1044, 1, 1, 8, 84, 2451, 90005, 1601952, 2302938, 12346, 1, 1, 9, 120, 5831, 533358, 43571400, 892341888, 591901884, 274668, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

The first five rows admit the g.f. 1/(1-x), 1/(1-x)^2, 1/(1-x)^4 and those given in A063842, A063843. Is it known that the n-th row admits a rational g.f. with denominator (1-x)^A000124(n)? - M. F. Hasler, Jan 19 2012
T(n+1,k-1) is the number of unoriented ways to color the edges of a regular n-dimensional simplex using up to k colors. - Robert A. Russell, Aug 21 2019

Examples

			Table begins
===========================================================
n\k| 0    1       2         3           4             5
---|-------------------------------------------------------
1  | 1    1       1         1           1             1 ...
2  | 1    2       3         4           5             6 ...
3  | 1    4      10        20          35            56 ...
4  | 1   11      66       276         900          2451 ...
5  | 1   34     792     10688       90005        533358 ...
6  | 1  156   25506   1601952    43571400     661452084 ...
7  | 1 1044 2302938 892341888 95277592625 4364646955812 ...
...
T(3,2)=10 because there are 10 unlabeled graphs with 3 nodes with at most 2 edges connecting any pair.
(. . .),(.-. .),(.-.-.),(.-.-.-),(.=. .),(.=.=.),(.=.=.=),(.-.=.),(.-.-.=),(.=.=.-). - _Geoffrey Critzer_, Jan 23 2012
		

Crossrefs

Rows (4th and 5th) are listed in A063842, A063843.
Cf. A327084 (unoriented simplex edge colorings).

Programs

  • Mathematica
    (* This code gives the array T(n,k). *) Needs["Combinatorica`"]; Transpose[Table[Table[PairGroupIndex[SymmetricGroup[n],s]/.Table[s[i]->k+1, {i,0,Binomial[n,2]}], {n,1,7}], {k,0,6}]]//Grid (* Geoffrey Critzer, Jan 23 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    T[n_, k_] := (s=0; Do[s += permcount[p]*(k+1)^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[T[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    T(n, k) = {my(s=0); forpart(p=n, s+=permcount(p)*(k+1)^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A063841_T(n,k): return int(sum(Fraction((k+1)**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

T(n,k) = A327084(n-1,k+1) for n > 1. - Robert A. Russell, Aug 21 2019

Extensions

More terms from Vladeta Jovovic, Sep 03 2001