cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063890 Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = n.

Original entry on oeis.org

1, 1, 0, 0, 2, 3, 0, 0, 12, 21, 0, 0, 113, 202, 0, 0, 1218, 2241, 0, 0, 14326, 26776, 0, 0, 177714, 335607, 0, 0, 2287975, 4353975, 0, 0, 30282850, 57965473, 0, 0, 409476546, 787414730, 0, 0, 5631955466, 10870618388, 0, 0, 78545902971, 152074824054, 0, 0
Offset: 0

Views

Author

Vladeta Jovovic, Aug 28 2001

Keywords

Examples

			a(8) = 12 because 8 = 1+2+3+4+5-6+7-8 = -1+2+3+4-5+6+7-8 = 1-2+3-4+5+6+7-8 = -1-2-3+4+5+6+7-8 = -1+2+3+4+5-6-7+8 = 1-2+3+4-5+6-7+8 = 1+2-3-4+5+6-7+8 = -1-2+3-4+5+6-7+8 = 1+2-3+4-5-6+7+8 = -1-2+3+4-5-6+7+8 = -1+2-3-4+5-6+7+8 = 1-2-3-4-5+6+7+8.
		

Crossrefs

Programs

  • Mathematica
    f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[n-1, s-n]+f[n-1, s+n]]; a[n_] := f[n, n]
    nmax = 44; d = {1}; a1 = {1};
    Do[
      d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n];
      i = Ceiling[Length[d]/2] + n;
      AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
      , {n, nmax}];
    a1 (* Ray Chandler, Mar 25 2014 *)

Formula

a(n) = [x^n] Product_{k=1..n} (x^k + 1/x^k). - Ilya Gutkovskiy, Jan 28 2022

Extensions

More terms from Dean Hickerson, Aug 30 2001