A104905
Numbers m such that d(m)*phi(m) = sigma(m), where d(m) is number of positive divisors of m.
Original entry on oeis.org
42 is in the sequence because d(42)=8; phi(42)=12; sigma(42)=96 & 8*12=96.
-
Do[If[DivisorSigma[0, n]*EulerPhi[n] == DivisorSigma[1, n], Print[n]], {n, 530000000}]
A104904
Numbers n such that d(n)*pi(n)=n, where d(n) is the number of positive divisors of n.
Original entry on oeis.org
2, 8408, 481044, 189961452, 75370122528, 75370124832, 4086199302976, 221945984411264
Offset: 1
189961452 is in the sequence because d(189961452)=18; pi(189961452)=10553414 & 18*10553414=189961452.
-
Do[If[DivisorSigma[0, n]*PrimePi[n] == n, Print[n]], {n, 2000000000}]
A104906
Numbers n such that d(n)*reversal(n)=phi(n), where d(n) is number of positive divisors of n.
Original entry on oeis.org
1, 10, 831, 8310
Offset: 1
8310 is in the sequence because d(8310)=16; reversal(8310)=138;
phi(8310)=2208 & 16*138=2108.
-
reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[0, n]*reversal[n] == EulerPhi[n], Print[n]], {n, 350000000}]
Showing 1-3 of 3 results.
Comments