A063909 Primes p such that 2*p - 5 is also prime.
5, 11, 17, 23, 29, 47, 53, 59, 71, 89, 101, 131, 137, 149, 179, 197, 227, 233, 257, 263, 281, 311, 353, 383, 389, 401, 431, 443, 467, 479, 491, 509, 557, 593, 599, 617, 641, 647, 653, 683, 719, 743, 809, 821, 857, 863, 941, 947, 953, 977, 1109
Offset: 1
Examples
29 is in the sequence since p = 29 is prime and 2*p - 5 = 53 is also prime.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..25000 (first 1000 terms from Harry J. Smith)
- Jon Maiga, Computer-generated formulas for A063909, Sequence Machine.
Programs
-
Magma
[p: p in PrimesUpTo(2000) | IsPrime(2*p-5)]; // Vincenzo Librandi, Feb 25 2016
-
Mathematica
Select[Prime[Range[500]],PrimeQ[2#-5]&] (* Harvey P. Dale, Oct 10 2011 *)
-
PARI
{ n=0; p=1; for (m=1, 10^9, p=nextprime(p+1); if (isprime(2*p - 5), write("b063909.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 02 2009
-
PARI
isA063909(p) = ((p%2)&&isprime(p)&&isprime(p+p-5)); \\ Antti Karttunen, Dec 07 2021
-
PARI
list(lim)=my(v=List()); forprimestep(p=5,lim\1,6, if(isprime(2*p-5), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 03 2025
Formula
a(n) = (A145471(n)+5)/2. [Also listed by Sequence Machine, and obviously true] - Antti Karttunen, Dec 07 2021
Comments