cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063919 Sum of proper unitary divisors (or unitary aliquot parts) of n, including 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 12, 1, 16, 1, 12, 1, 42, 1, 1, 15, 20, 13, 14, 1, 22, 17, 14, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 30, 17, 16, 23, 32, 1, 60, 1, 34, 17, 1, 19, 78, 1, 22, 27, 74, 1, 18, 1, 40, 29, 24, 19, 90, 1, 22, 1, 44
Offset: 1

Views

Author

Felice Russo, Aug 31 2001

Keywords

Comments

For definition of unitary divisor see A034448.

Examples

			a(10) = 8 because the unitary divisors of 10 are 1, 2, 5 and 10, with sum 18 and 18-10 = 8.
		

Crossrefs

The values of sequence are A034448(n)-n (for n > 1).

Programs

  • Haskell
    a063919 1 = 1
    a063919 n = sum $ init $ a077610_row n
    -- Reinhard Zumkeller, Mar 12 2012
  • Maple
    A063919 := proc(n)
        if n = 1 then
            1;
        else
            A034448(n)-n ;
        end if;
    end proc: # R. J. Mathar, May 14 2013
  • Mathematica
    a[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1&]]-n; a[1] = 1; Table[a[n], {n, 82}] (* Jean-François Alcover, Aug 31 2011 *)
  • PARI
    usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { for (n=1, 1000, if (n>1, a=usigma(n) - n, a=1); write("b063919.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 02 2009
    
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n)); \\ Antti Karttunen, Jun 12 2018
    

Formula

a(n) = A034460(n), n>1. - R. J. Mathar, Oct 02 2008
For n > 1: a(n) = sum (A077610(n,k): k = 1 .. A034444(n) - 1). - Reinhard Zumkeller, Mar 12 2012