A063919 Sum of proper unitary divisors (or unitary aliquot parts) of n, including 1.
1, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 12, 1, 16, 1, 12, 1, 42, 1, 1, 15, 20, 13, 14, 1, 22, 17, 14, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 30, 17, 16, 23, 32, 1, 60, 1, 34, 17, 1, 19, 78, 1, 22, 27, 74, 1, 18, 1, 40, 29, 24, 19, 90, 1, 22, 1, 44
Offset: 1
Examples
a(10) = 8 because the unitary divisors of 10 are 1, 2, 5 and 10, with sum 18 and 18-10 = 8.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from Harry J. Smith)
Programs
-
Haskell
a063919 1 = 1 a063919 n = sum $ init $ a077610_row n -- Reinhard Zumkeller, Mar 12 2012
-
Maple
A063919 := proc(n) if n = 1 then 1; else A034448(n)-n ; end if; end proc: # R. J. Mathar, May 14 2013
-
Mathematica
a[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1&]]-n; a[1] = 1; Table[a[n], {n, 82}] (* Jean-François Alcover, Aug 31 2011 *)
-
PARI
usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) { for (n=1, 1000, if (n>1, a=usigma(n) - n, a=1); write("b063919.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 02 2009
-
PARI
A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460 A063919(n) = if(1==n,n,A034460(n)); \\ Antti Karttunen, Jun 12 2018
Formula
a(n) = A034460(n), n>1. - R. J. Mathar, Oct 02 2008
Comments