A063962 Number of distinct prime divisors of n that are <= sqrt(n).
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 3
Offset: 1
Keywords
Examples
a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33. From _Gus Wiseman_, Feb 25 2021: (Start) The a(n) inferior prime divisors (columns) for selected n: n = 3 8 24 3660 390 3570 87780 --------------------------------- {} 2 2 2 2 2 2 3 3 3 3 3 5 5 5 5 13 7 7 17 11 19 (End)
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Zeros are at indices A008578.
Dominates A333806 (the strictly inferior version).
The superior version is A341591.
The strictly superior version is A341642.
A033677 selects the smallest superior divisor.
A038548 counts inferior divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341676 lists the unique superior prime divisors.
Programs
-
Haskell
a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n] -- Reinhard Zumkeller, Apr 05 2012
-
Maple
with(numtheory): a:=proc(n) local c,F,f,i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n),n=1..105); # Emeric Deutsch
-
Mathematica
Join[{0},Table[Count[Transpose[FactorInteger[n]][[1]],?(#<=Sqrt[n]&)],{n,2,110}]] (* _Harvey P. Dale, Mar 26 2015 *)
-
PARI
{ for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
Formula
G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021
Extensions
Revised definition from Emeric Deutsch, Jan 31 2006
Comments