A064043 Number of length 3 walks on an n-dimensional hypercubic lattice starting at the origin and staying in the nonnegative part.
0, 3, 18, 51, 108, 195, 318, 483, 696, 963, 1290, 1683, 2148, 2691, 3318, 4035, 4848, 5763, 6786, 7923, 9180, 10563, 12078, 13731, 15528, 17475, 19578, 21843, 24276, 26883, 29670, 32643, 35808, 39171, 42738, 46515, 50508, 54723, 59166, 63843, 68760, 73923, 79338
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- D. R. L. Brown, Bounds on surmising remixed keys, IACR, Report 2015/375, 2015-2016. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Maple
seq(sum(3*n+n^2-1, k=1..n), n=0..39); # Zerinvary Lajos, Jan 28 2008
-
Mathematica
Table[n*(n^2 + 3n -1), {n,0,50}] (* G. C. Greubel, Jul 20 2017 *)
-
PARI
a(n) = { n*(n^2 + 3*n - 1) } \\ Harry J. Smith, Sep 06 2009
Formula
G.f.: 3*x*(1+2*x-x^2)/(1-x)^4. - Colin Barker, Apr 19 2012
E.g.f.: (x^3 + 6*x^2 + 3*x)*exp(x). - G. C. Greubel, Jul 20 2017
a(n) = A084990(n)/3. - Alois P. Heinz, Jul 21 2017