cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064043 Number of length 3 walks on an n-dimensional hypercubic lattice starting at the origin and staying in the nonnegative part.

Original entry on oeis.org

0, 3, 18, 51, 108, 195, 318, 483, 696, 963, 1290, 1683, 2148, 2691, 3318, 4035, 4848, 5763, 6786, 7923, 9180, 10563, 12078, 13731, 15528, 17475, 19578, 21843, 24276, 26883, 29670, 32643, 35808, 39171, 42738, 46515, 50508, 54723, 59166, 63843, 68760, 73923, 79338
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Crossrefs

Number of walks length 0, 1 and 2 are A000012, A001477 and A002378.
Cf. A084990.

Programs

  • Maple
    seq(sum(3*n+n^2-1, k=1..n), n=0..39); # Zerinvary Lajos, Jan 28 2008
  • Mathematica
    Table[n*(n^2 + 3n -1), {n,0,50}] (* G. C. Greubel, Jul 20 2017 *)
  • PARI
    a(n) = { n*(n^2 + 3*n - 1) } \\ Harry J. Smith, Sep 06 2009

Formula

a(n) = n*(n^2 + 3*n - 1) = n*A014209(n) = A064044(n, 3).
a(n) = a(n-1) + 3*A002378(n-1) + 6*A001477(n-1) + 3*A000012(n-1).
G.f.: 3*x*(1+2*x-x^2)/(1-x)^4. - Colin Barker, Apr 19 2012
E.g.f.: (x^3 + 6*x^2 + 3*x)*exp(x). - G. C. Greubel, Jul 20 2017
a(n) = A084990(n)/3. - Alois P. Heinz, Jul 21 2017