cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084990 a(n) = n*(n^2+3*n-1)/3.

Original entry on oeis.org

0, 1, 6, 17, 36, 65, 106, 161, 232, 321, 430, 561, 716, 897, 1106, 1345, 1616, 1921, 2262, 2641, 3060, 3521, 4026, 4577, 5176, 5825, 6526, 7281, 8092, 8961, 9890, 10881, 11936, 13057, 14246, 15505, 16836, 18241, 19722, 21281, 22920, 24641, 26446, 28337, 30316
Offset: 0

Views

Author

Gary W. Adamson, Jul 16 2003

Keywords

Comments

Row sums of triangle A131782 starting (1, 6, 17, 36, 65, 106, ...). - Gary W. Adamson, Jul 14 2007
a(n) is the number of triples (x,y,z) in {1,2,...,n}^3 with x <= y <= z or x >= y >= z. - Jack Kennedy, Mar 14 2009
a(2*n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 16*n^4). - Vladimir Shevelev, May 18 2012

Examples

			Let n=2. Consider nonnegative multiples of 5 up to 16*2^4 - 1 = 255. There are 52 such numbers and from them only 8 (namely, 35, 50, 55, 115, 140, 200, 205, 220) have an odd digit sum in base 4. Therefore, a(4) = (52 - 8) - 8 = 36. - _Vladimir Shevelev_, May 18 2012
		

Crossrefs

Programs

Formula

a(n) = 2*A000292(n-1) - 1 (notice offset=-1 in A000292!).
a(n) = (n-1)*(n+1)*(n+3)/3 + 1. - Reinhard Zumkeller, Aug 20 2007
a(n) = A077415(n+1) + 1 for n > 0; a(n) = A000290(n) + A007290(n); a(n+1) = Sum_{k=0..n} A028387(k). - Reinhard Zumkeller, Aug 20 2007
a(2*n) = Sum_{i=0..16*n^4, i==0 (mod 2*n+1)} (-1)^s_(2*n)(i), where s_k(n) is the digit sum of n in base k. - Vladimir Shevelev, May 18 2012
a(2*n) = (2/(2*n+1))*Sum_{i=1..n} tan^4(Pi*i/(2*n+1)). - Vladimir Shevelev, May 23 2012
a(n) = Sum_{i=1..n} i*(i+1)-1. - Wesley Ivan Hurt, Oct 19 2013
G.f.: x*(1+2*x-x^2)/(1-x)^4. - Vincenzo Librandi, Mar 28 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Vincenzo Librandi, Mar 28 2014
a(n) = A064043(n)/3. - Alois P. Heinz, Jul 21 2017
E.g.f.: x*exp(x)*(x^2 + 6*x + 3)/3. - Stefano Spezia, Mar 06 2024

A265080 Array read by antidiagonals, arising from study of remixing keys in public-key cryptography.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 12, 18, 4, 0, 0, 5, 20, 51, 44, 5, 0, 0, 6, 30, 108, 192, 110, 6, 0, 0, 7, 42, 195, 544, 675, 252, 7, 0, 0, 8, 56, 318, 1220, 2540, 2358, 588, 8, 0, 0, 9, 72, 483, 2364, 7145, 11544, 8043, 1304, 9, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2016

Keywords

Comments

See Brown (2015) for precise definition.
If you randomly throw n balls into k boxes then T(n,k)/k^n is the expected number of balls in the fullest box. - Henry Bottomley, Mar 20 2021

Examples

			Array begins:
  0, 0,   0,   0,    0,    0, ...
  0, 1,   2,   3,    4,    5, ...
  0, 2,   6,  12,   20,   30, ...
  0, 3,  18,  51,  108,  195, ...
  0, 4,  44, 192,  544, 1220, ...
  0, 5, 110, 675, 2540, 7145, ...
  ...
		

Crossrefs

Rows n=1..5 are A001477, A002378, A064043, A265081, A265082.
Columns k=1..5 are A001477, A230137, A265083, A265084, A265085.
Main diagonal is A208250.

Programs

  • PARI
    Q(p)={my(S=Set(p));prod(i=1, #S, (#select(t->t==S[i],p))!)}
    T(n,k)={my(s=0); if(n, forpart(p=n, s+=p[#p]*n!*(#p)!*binomial(k,#p) / (prod(i=1,#p,p[i]!) * Q(Vec(p))))); s} \\ Andrew Howroyd, Mar 20 2021
    
  • PARI
    T(n,k) = {n!*polcoef(sum(j=0, n, exp(x + O(x*x^n))^k - sum(i=0, j, x^i/i!, O(x*x^n))^k), n)} \\ Andrew Howroyd, Aug 09 2025

Formula

T(n,k) = n! * [x^n] Sum_{j>=0} (exp(x)^k - (Sum_{i=0..j} x^i/i!)^k). - Andrew Howroyd, Aug 09 2025

Extensions

More terms from Henry Bottomley, Mar 20 2021

A064044 Square array read by antidiagonals of number of length k walks on an n-dimensional hypercubic lattice starting at the origin and staying in the nonnegative part.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 18, 12, 4, 1, 0, 10, 60, 51, 20, 5, 1, 0, 20, 200, 234, 108, 30, 6, 1, 0, 35, 700, 1110, 624, 195, 42, 7, 1, 0, 70, 2450, 5460, 3760, 1350, 318, 56, 8, 1, 0, 126, 8820, 27405, 23480, 9770, 2556, 483, 72, 9, 1, 0, 252
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Comments

E.g.f. of row n equals ( besseli(0,2*y) + y*besseli(1,2*y) )^n. - Paul D. Hanna, Apr 07 2005

Examples

			Rows start:
1, 0,  0,   0,    0,     0,      0, ...
1, 1,  2,   3,    6,    10,     20, ...
1, 2,  6,  18,   60,   200,    700, ...
1, 3, 12,  51,  234,  1110,   5460, ...
1, 4, 20, 108,  624,  3760,  23480, ...
1, 5, 30, 195, 1350,  9770,  73300, ...
1, 6, 42, 318, 2556, 21480, 187140, ...
		

Crossrefs

Rows include A000007, A001405, A005566, A064036. Columns include A000012, A001477, A002378, A064043. Cf. A064045.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
           add(binomial(k, j)*binomial(j, floor(j/2))
           *a(n-1, k-j), j=0..k))
        end:
    seq(seq(a(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 06 2014
  • Mathematica
    a[n_, k_] := a[n, k] = If[n == 0, If[k == 0, 1, 0], Sum[Binomial[k, j]*Binomial[j, Floor[j/2]]*a[n-1, k-j], {j, 0, k}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); k!*polcoeff(polcoeff(1/(1-X*besseli(0,2*Y)-X*Y*besseli(1,2*Y)),n,x),k,y)} /* Hanna */

Formula

a(n,k) = Sum{j=0..k} C(k,j) B(j) a(n-1,k-j) where B(j) = C(j,[j/2]) = A001405(j) with a(0,0) = 1 and a(0,k) = 0 for k>0.
E.g.f: 1/(1 - x*besseli(0, 2*y) - x*y*besseli(1, 2*y)). - Paul D. Hanna, Apr 07 2005

A185878 Accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 11, 10, 3, 24, 28, 18, 4, 45, 60, 51, 28, 5, 76, 110, 108, 80, 40, 6, 119, 182, 195, 168, 115, 54, 7, 176, 280, 318, 300, 240, 156, 70, 8, 249, 408, 483, 484, 425, 324, 203, 88, 9, 340, 570, 696, 728, 680, 570, 420, 256, 108, 10, 451, 770, 963, 1040, 1015, 906, 735, 528, 315, 130, 11, 584, 1012, 1290, 1428, 1440, 1344, 1162, 920, 648, 380, 154, 12
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ...
See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
  1,  4, 11,  24,  45, ...
  2, 10, 28,  60, 110, ...
  3, 18, 51, 108, 195, ...
  4, 28, 80, 168, 300, ...
  ...
		

Crossrefs

Row 1 to 3: A006527, A006331, A064043.
Column 1 to 5: A000027, A028552, A140677, 12*A000096, 5*A130861.

Programs

  • Mathematica
    f[n_, k_] := k*n*(2*k^2 - 3*k + 3*k*n - 3*n + 7)/6; Table[f[n - k + 1, k], {n,10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = k*n*(2*k^2 -3*k +3*k*n -3*n +7)/6, k>=1, n>=1.
Showing 1-4 of 4 results.