cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A010551 Multiply successively by 1,1,2,2,3,3,4,4,..., n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 36, 144, 576, 2880, 14400, 86400, 518400, 3628800, 25401600, 203212800, 1625702400, 14631321600, 131681894400, 1316818944000, 13168189440000, 144850083840000, 1593350922240000, 19120211066880000, 229442532802560000, 2982752926433280000
Offset: 0

Views

Author

Keywords

Comments

From Emeric Deutsch, Dec 14 2008: (Start)
Number of permutations of {1,2,...,n-1} having a single run of odd entries. Example: a(5)=12 because we have 1324,1342,3124,3142,2134,4132,2314,4312, 2413, 4213, 2431 and 4231.
a(n) = A152666(n-1,1). (End)
a(n+1) gives the permanent of the n X n matrix whose (i,j)-element is i+j-1 modulo 2. - John W. Layman, Jan 03 2011
From Daniel Forgues, May 20 2011: (Start)
a(0) = 1 since it is the empty product.
A010551(n-2), n >= 2, equal to (ceiling((n-2)/2))! * (floor((n-2)/2))!, gives the number of arrangements of n-2 entries from 2 to n-1, starting with an even entry and where the parity of adjacent entries alternates. This is the number of arrangements to investigate for row n of a prime pyramid (A051237). (End)
Partial products of A008619. - Reinhard Zumkeller, Apr 02 2012
Also size of the equivalence class of S_n containing the identity permutation under transformations of positionally adjacent elements of the form abc <--> acb where a < b < c, cf. A210667 (equivalently under such transformations of the form abc <--> bac where a < b < c.) - Tom Roby, May 15 2012
Row sums of A246117. - Peter Bala, Aug 15 2014
a(n) is the number of parity-alternating permutations of size n. A permutation is parity-alternating if it sends even integers to even, and odd to odd. - Per W. Alexandersson, Jun 06 2022
n divides a(n) if and only if n is not prime. Since a(n) = floor(n/2)!*floor((n+1)/2)!, if n is prime then n is not a factor of a(n). All the prime factors of a(n) are in fact less than or equal to (n+1)/2. If n is composite, then it's possible to write it as p*q with p and q less than or equal to n/2. So p and q are factors of a(n). - Davide Oliveri, Apr 01 2023
Number of permutations of {1, 2, ..., n-1} where each entry is not greater than twice the previous entry. - Dewangga Putra Sheradhien, Jul 13 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 12*x^5 + 36*x^6 + 144*x^7 + 576*x^8 + ...
For n = 7, a(n) = 1*1*2*2*3*3*4 (7 factors), which is 144. - _Michael B. Porter_, Jul 03 2016
		

Crossrefs

Column k=2 of A275062.

Programs

  • Haskell
    a010551 n = a010551_list !! n
    a010551_list = scanl (*) 1 a008619_list
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    [Factorial(n div 2)*Factorial((n+1) div 2): n in [0..25]]; // Vincenzo Librandi Jan 17 2018
    
  • Maple
    A010551 := proc(n)
        option remember;
        if n <= 1 then
            1
        else
            procname(n-1) *trunc( (n+1)/2 );
        fi;
    end:
  • Mathematica
    FoldList[ Times, 1, Flatten@ Array[ {#, #} &, 11]] (* Robert G. Wilson v, Jul 14 2010 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n)); 1/polcoeff(besseli(0,2*X)+X*besseli(1,2*X),n,x)} \\ Paul D. Hanna, Apr 07 2005
    
  • PARI
    A010551(n)=(n\2)!*((n+1)\2)! \\ Michael Somos, Dec 29 2012, edited by M. F. Hasler, Nov 26 2017
    
  • Python
    def O(f):
        c = 1
        while len(f) > 1:
            f.sort()
            m = abs(f[0] - f[1])
            c *= m
            f[0] = m
            f.pop(1)
        return c
    a = lambda n: O(list(range(1, n+1)))
    print([a(n) for n in range(0, 26)]) # Darío Clavijo, Aug 24 2024

Formula

a(n) = floor(n/2)!*floor((n+1)/2)! is the number of permutations p of {1, 2, 3, ..., n} such that for every i, i and p(i) have the same parity, i.e., p(i) - i is even. - Avi Peretz (njk(AT)netvision.net.il), Feb 22 2001
a(n) = n!/binomial(n, floor(n/2)). - Paul Barry, Sep 12 2004
G.f.: Sum_{n>=0} x^n/a(n) = besseli(0, 2*x) + x*besseli(1, 2*x). - Paul D. Hanna, Apr 07 2005
E.g.f.: 1/(1-x/2) + (1/2)/(1-x/2)*arccos(1-x^2/2)/sqrt(1-x^2/4). - Paul D. Hanna, Aug 28 2005
G.f.: G(0) where G(k) = 1 + (k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 28 2012
D-finite with recurrence: 4*a(n) - 2*a(n-1) - n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
a(n) = a(n-1) * (a(n-2) + a(n-3)) / a(n-3) for all n >= 3. - Michael Somos, Dec 29 2012
G.f.: 1 + x + x^2*(1 + x*(G(0) - 1)/(x-1)) where G(k) = 1 - (k+2)/(1-x/(x - 1/(1 - (k+2)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)/(1-x/(x - 1/(1 - (k+1)/(1-x/(x - 1/G(k+1) ))))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
G.f.: 1 + x*G(0), where G(k) = 1 + x*(k+1)/(1 - x*(k+2)/(x*(k+2) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: Q(0), where Q(k) = 1 + x*(k+1)/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 08 2013
Sum_{n >= 1} 1/a(n) = A130820. - Peter Bala, Jul 02 2016
a(n) ~ sqrt(Pi*n) * n! / 2^(n + 1/2). - Vaclav Kotesovec, Oct 02 2018
Sum_{n>=0} (-1)^n/a(n) = A229020. - Amiram Eldar, Apr 12 2021

A064043 Number of length 3 walks on an n-dimensional hypercubic lattice starting at the origin and staying in the nonnegative part.

Original entry on oeis.org

0, 3, 18, 51, 108, 195, 318, 483, 696, 963, 1290, 1683, 2148, 2691, 3318, 4035, 4848, 5763, 6786, 7923, 9180, 10563, 12078, 13731, 15528, 17475, 19578, 21843, 24276, 26883, 29670, 32643, 35808, 39171, 42738, 46515, 50508, 54723, 59166, 63843, 68760, 73923, 79338
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Crossrefs

Number of walks length 0, 1 and 2 are A000012, A001477 and A002378.
Cf. A084990.

Programs

  • Maple
    seq(sum(3*n+n^2-1, k=1..n), n=0..39); # Zerinvary Lajos, Jan 28 2008
  • Mathematica
    Table[n*(n^2 + 3n -1), {n,0,50}] (* G. C. Greubel, Jul 20 2017 *)
  • PARI
    a(n) = { n*(n^2 + 3*n - 1) } \\ Harry J. Smith, Sep 06 2009

Formula

a(n) = n*(n^2 + 3*n - 1) = n*A014209(n) = A064044(n, 3).
a(n) = a(n-1) + 3*A002378(n-1) + 6*A001477(n-1) + 3*A000012(n-1).
G.f.: 3*x*(1+2*x-x^2)/(1-x)^4. - Colin Barker, Apr 19 2012
E.g.f.: (x^3 + 6*x^2 + 3*x)*exp(x). - G. C. Greubel, Jul 20 2017
a(n) = A084990(n)/3. - Alois P. Heinz, Jul 21 2017

A064045 Square array read by antidiagonals of number of length 2k walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 10, 3, 1, 0, 14, 70, 24, 4, 1, 0, 42, 588, 285, 44, 5, 1, 0, 132, 5544, 4242, 740, 70, 6, 1, 0, 429, 56628, 73206, 16016, 1525, 102, 7, 1, 0, 1430, 613470, 1403028, 410928, 43470, 2730, 140, 8, 1, 0, 4862, 6952660, 29082339, 11925672, 1491210, 96684, 4445, 184, 9, 1
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Examples

			Rows start:
1, 0,  0,   0,    0,     0,       0, ...
1, 1,  2,   5,   14,    42,     132, ...
1, 2, 10,  70,  588,  5544,   56628, ...
1, 3, 24, 285, 4242, 73206, 1403028, ...
		

Crossrefs

Rows include A000007, A000108, A005568, A064037. Columns include A000012, A001477, A049450, A064046. Cf. A064044.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
           add(binomial(2*k, 2*j)*binomial(2*j, j)/
           (j+1)*a(n-1, k-j), j=0..k))
        end:
    seq(seq(a(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 06 2014
  • Mathematica
    a[n_, k_] := a[n, k] = If[n == 0, If[k == 0, 1, 0], Sum[Binomial[2*k, 2*j]* Binomial[2*j, j]/(j+1)*a[n-1, k-j], {j, 0, k}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)

Formula

a(n,k) = Sum_{j=0..k} C(2k,2j) c(j) a(n-1,k-j) where c(j) = C(2j,j)/(j+1) = A000108(j) with a(0,0) = 1 and a(0,k) = 0 for k>0.
Showing 1-3 of 3 results.