cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A064044 Square array read by antidiagonals of number of length k walks on an n-dimensional hypercubic lattice starting at the origin and staying in the nonnegative part.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 18, 12, 4, 1, 0, 10, 60, 51, 20, 5, 1, 0, 20, 200, 234, 108, 30, 6, 1, 0, 35, 700, 1110, 624, 195, 42, 7, 1, 0, 70, 2450, 5460, 3760, 1350, 318, 56, 8, 1, 0, 126, 8820, 27405, 23480, 9770, 2556, 483, 72, 9, 1, 0, 252
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Comments

E.g.f. of row n equals ( besseli(0,2*y) + y*besseli(1,2*y) )^n. - Paul D. Hanna, Apr 07 2005

Examples

			Rows start:
1, 0,  0,   0,    0,     0,      0, ...
1, 1,  2,   3,    6,    10,     20, ...
1, 2,  6,  18,   60,   200,    700, ...
1, 3, 12,  51,  234,  1110,   5460, ...
1, 4, 20, 108,  624,  3760,  23480, ...
1, 5, 30, 195, 1350,  9770,  73300, ...
1, 6, 42, 318, 2556, 21480, 187140, ...
		

Crossrefs

Rows include A000007, A001405, A005566, A064036. Columns include A000012, A001477, A002378, A064043. Cf. A064045.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
           add(binomial(k, j)*binomial(j, floor(j/2))
           *a(n-1, k-j), j=0..k))
        end:
    seq(seq(a(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 06 2014
  • Mathematica
    a[n_, k_] := a[n, k] = If[n == 0, If[k == 0, 1, 0], Sum[Binomial[k, j]*Binomial[j, Floor[j/2]]*a[n-1, k-j], {j, 0, k}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); k!*polcoeff(polcoeff(1/(1-X*besseli(0,2*Y)-X*Y*besseli(1,2*Y)),n,x),k,y)} /* Hanna */

Formula

a(n,k) = Sum{j=0..k} C(k,j) B(j) a(n-1,k-j) where B(j) = C(j,[j/2]) = A001405(j) with a(0,0) = 1 and a(0,k) = 0 for k>0.
E.g.f: 1/(1 - x*besseli(0, 2*y) - x*y*besseli(1, 2*y)). - Paul D. Hanna, Apr 07 2005

A064046 Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.

Original entry on oeis.org

0, 5, 70, 285, 740, 1525, 2730, 4445, 6760, 9765, 13550, 18205, 23820, 30485, 38290, 47325, 57680, 69445, 82710, 97565, 114100, 132405, 152570, 174685, 198840, 225125, 253630, 284445, 317660, 353365, 391650, 432605, 476320, 522885, 572390
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Crossrefs

Numbers of walks of length 0, 1, 2, 3, 4 and 5 are A000012, A000004, A001477, A000004, A049450 and A000004.

Programs

  • Magma
    [5*n*(3*n^2-3*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,70,285},40] (* Harvey P. Dale, Dec 02 2012 *)

Formula

a(n) = 5*n*(3*n^2 - 3*n + 1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A064045(n, 3).
a(n) = a(n-1) + 15*A049450(n-1) + 30*A001477(n-1) + 5*A000012(n-1).
G.f.: 5*x*(7*x^2 + 10*x + 1)/(x-1)^4. [Colin Barker, Jul 21 2012]
Showing 1-2 of 2 results.