A085142 Duplicate of A064053.
1, 0, -4, 4, -4, 4, -4, 8, -4, 0, -4, 8, -4, 0, -4, 4, -4, 0, 0, 8, -4, -4, -4, 8, 0, 0, 0, 4, -4, 0, -4, 8, -4, -4, 0
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = - x^2 + x^3 - x^4 + x^5 - x^6 + 2*x^7 - x^8 - x^10 + 2*x^11 - x^12 + ...
add( (-1)^n*q^((3*n^2+n)/2)/(1+q^n),n=1..10);
a[n_]:= SeriesCoefficient[Sum[(-1)^k*q^((3*k^2 + k)/2)/(1 + q^k), {k, 1, 2*nmax}], {q,0,n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 18 2018 *)
{a(n) = if( n<0, 0, polcoeff( sum(k=1, (sqrtint(24*n + 1) - 1) \ 6, (-1)^k * x^((3*k^2 + k)/2) / (1 + x^k), x * O(x^n)), n))}; /* Michael Somos, Mar 13 2006 */
nmax = 200; f[q_, s_] := Sum[q^(n^2)/Product[1 + q^k, {k, n}]^2, {n, 0, s}]; A000039:= CoefficientList[Series[f[q, nmax], {q, 0, nmax}], q][[1 ;; -1 ;; 2]]; Table[Sum[Abs[A000039[[k]]], {k,1,n}], {n,1,51}] (* G. C. Greubel, Feb 18 2018 *)