cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097042 G.f. = (1 + 4 * g.f. for A096661)/(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)).

Original entry on oeis.org

1, 2, 0, 4, 2, 4, 4, 8, 8, 10, 12, 16, 20, 24, 28, 36, 42, 48, 60, 72, 84, 100, 116, 136, 160, 186, 216, 252, 292, 336, 388, 448, 512, 588, 672, 768, 878, 1000, 1136, 1292, 1464, 1656, 1876, 2120, 2388, 2696, 3032, 3408, 3832, 4298, 4816, 5396, 6036, 6744, 7532, 8404
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2004

Keywords

Comments

a(0) = 1; for n>0, a(n) = 2*A026832(n) (i.e., essentially Fine's numbers L(n) multiplied by 2).
The number of odd-even overpartitions of n: an odd-even overpartition of n is an overpartition of n with the smallest part odd and such that the difference between successive parts is odd if the smaller part is nonoverlined and even otherwise - see Yang 2017. - Peter Bala, Mar 29 2017

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).

Crossrefs

Programs

  • Mathematica
    nmax = 60; Flatten[{1, Rest[CoefficientList[Series[2*Sum[x^(2*k - 1) QPochhammer[-x^(2*k), x], {k, nmax}], {x, 0, nmax}], x]]}] (* Vaclav Kotesovec, Mar 28 2017 *)

Formula

a(n) ~ 1/(3^(5/4)*n^(3/4))*exp(Pi*sqrt(n/3)) [Jang 2017]. - Peter Bala, Mar 29 2017
Conjectural g.f.: 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2)/( (1 + q^n) * Product_{k = 1..n} 1 - q^k ). - Peter Bala, Feb 19 2021

Extensions

Name corrected by Peter Bala, Feb 19 2021

A026832 Number of partitions of n into distinct parts, the least being odd.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 8, 10, 12, 14, 18, 21, 24, 30, 36, 42, 50, 58, 68, 80, 93, 108, 126, 146, 168, 194, 224, 256, 294, 336, 384, 439, 500, 568, 646, 732, 828, 938, 1060, 1194, 1348, 1516, 1704, 1916, 2149, 2408, 2698, 3018, 3372, 3766, 4202, 4682
Offset: 0

Views

Author

Keywords

Comments

Fine's numbers L(n).
Also number of partitions of n such that if k is the largest part, then k occurs an odd number of times and each of the numbers 1,2,...,k-1 occurs at least once. Example: a(7)=4 because we have [3,2,1,1], [2,2,2,1], [2,1,1,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 29 2006

Examples

			a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).

Crossrefs

Programs

  • Haskell
    a026832 n = p 1 n where
       p _ 0 = 1
       p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
    -- Reinhard Zumkeller, Jun 14 2012
  • Maple
    g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Emeric Deutsch, Mar 29 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 `if`(n=0, 0, b(n$2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 01 2019
  • Mathematica
    mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]]  (* Jean-François Alcover, Apr 05 2011, after Emeric Deutsch *)
    Join[{0},Table[Length[Select[IntegerPartitions[n],OddQ[#[[-1]]]&&Max[Tally[#][[All,2]]] == 1&]],{n,60}]] (* Harvey P. Dale, May 14 2022 *)

Formula

G.f.: Sum_{k>=1} ((-1)^(k+1)*(-1+Product_{i>=k} (1+x^i))). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{ k >= 1 } x^(k*(k+1)/2)/((1+x^k)*Product_{i=1..k} (1-x^i) ). - Vladeta Jovovic, Aug 10 2004
(1 + Sum_{n >= 1} a(n)q^n )*(1 + 2 Sum_{m>=1} (-1)^m*q^(m^2)) = Sum_{n >= 1} (-1)^n*q^((3*n^2+n)/2)/(1+q^n). [Fine]
G.f.: Sum_{k>=1} x^(2k-1)*Product_{j>=2k} (1 + x^j). - Emeric Deutsch, Mar 29 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Emeric Deutsch, Mar 29 2006
a(0)=0 prepended by Alois P. Heinz, Feb 01 2019

A064053 Auxiliary sequence gamma(n) used to compute coefficients in series expansion of the mock theta function f(q) via A(n) = Sum_{r=0..n} p(r)*gamma(n-r), with p(r) the partition function A000041.

Original entry on oeis.org

1, 0, -4, 4, -4, 4, -4, 8, -4, 0, -4, 8, -4, 0, -4, 4, -4, 0, 0, 8, -4, -4, -4, 8, 0, 0, 0, 4, -4, 0, -4, 8, -4, -4, 0, 8, 0, 0, -8, 4, -8, 0, 4, 8, -4, 0, -8, 8, 0, 0, -4, 4, -4, 0, -4, 12, -4, 0, 0, 8, -4, 0, -8, 0, -4, 4, 4, 8, -4, 0, -12, 8, 0, 0, 0, 4, -4, -4, -4, 8, -8, 0, 0, 8, 4, 4, -8, 0, -4, 0, 0, 4, -4, 0, -8, 12, 0, 0, 4, 0, -4, 0, -4
Offset: 0

Views

Author

Eric W. Weisstein, Aug 28 2001

Keywords

Comments

See Dragonette for the definition of f(q) and A(n). - N. J. A. Sloane, Sep 24 2022

Examples

			G.f. = 1 - 4*x^2 + 4*x^3 - 4*x^4 + 4*x^5 - 4*x^6 + 8*x^7 - 4*x^8 - 4*x^10 + 8*x^11 - 4*x^12 - ...
		

References

  • G. E. Andrews, The theory of partitions, Cambridge University Press, Cambridge, 1998, page 82, Example 5. MR1634067 (99c:11126). [The Gamma function used by Andrews is the classical Gamma function, which is different from the gamma(n) of this sequence. - N. J. A. Sloane, Sep 24 2022]

Crossrefs

Programs

  • Mathematica
    a[ n_]:= SeriesCoefficient[1 +4 *Sum[(-1)^k*x^(k*(3*k+1)/2)/(1+x^k), {k, Quotient[Sqrt[1 +24*n] - 1, 6]}], {x, 0, n}]; (* Michael Somos, Apr 08 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 4 * polcoeff( sum(k=1, (sqrtint(24*n + 1) - 1) \ 6, (-1)^k * x^((3*k^2 + k)/2) / (1 + x^k), x * O(x^n)), n))}; /* Michael Somos, Mar 13 2006 */

Formula

G.f.: 1 + 4 * Sum_{k>0} (-1)^k * x^(k*(3*k + 1)/2) / (1 + x^k). - Michael Somos, Jun 19 2003
Convolution of this sequence and A000041 is A000025. - Michael Somos, Jun 19 2003
a(n) = 4 * A096661(n) unless n=0.

Extensions

Entry revised by Michael Somos, Mar 13 2006
Deleted edit that tried to change gamma(n) to Gamma(n), and restored original definition. - N. J. A. Sloane, Sep 24 2022
Showing 1-3 of 3 results.