cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064059 Seventh column of Catalan triangle A009766.

Original entry on oeis.org

132, 429, 1001, 2002, 3640, 6188, 9996, 15504, 23256, 33915, 48279, 67298, 92092, 123970, 164450, 215280, 278460, 356265, 451269, 566370, 704816, 870232, 1066648, 1298528, 1570800, 1888887, 2258739, 2686866, 3180372, 3746990, 4395118, 5133856, 5973044
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2001

Keywords

Crossrefs

Cf. A000096, A005586, A005587, A005557 (third to sixth column).

Programs

  • Magma
    A064059:= func< n | (n+1)*Binomial(n+12,5)/6 >;
    [A064059(n): n in [0..40]]; // G. C. Greubel, Sep 27 2024
    
  • Maple
    [seq(binomial(n+1,6)-2*binomial(n,5),n=12..55)]; # Zerinvary Lajos, Jul 19 2006
  • Mathematica
    CoefficientList[Series[(42 z^5-252 z^4+616 z^3-770 z^2+495 z-132)/(z-1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{132,429,1001,2002,3640,6188,9996},40] (* Harvey P. Dale, Jan 08 2025 *)
  • SageMath
    def A064059(n): return (n+1)*binomial(n+12,5)//6
    [A064059(n) for n in range(41)] # G. C. Greubel, Sep 27 2024

Formula

G.f.: (132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^7; numerator polynomial is N(2;5, x) from A062991.
a(n) = A009766(n+6, 6) = (n+1)*binomial(n+12,5)/6.
a(n) = binomial(n+13,6) - 2*binomial(n+12,5). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+11,5). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 25961/2134440.
Sum_{n>=0} (-1)^n/a(n) = 4160*log(2)/77 - 79917773/2134440. (End)