A064059 Seventh column of Catalan triangle A009766.
132, 429, 1001, 2002, 3640, 6188, 9996, 15504, 23256, 33915, 48279, 67298, 92092, 123970, 164450, 215280, 278460, 356265, 451269, 566370, 704816, 870232, 1066648, 1298528, 1570800, 1888887, 2258739, 2686866, 3180372, 3746990, 4395118, 5133856, 5973044
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
A064059:= func< n | (n+1)*Binomial(n+12,5)/6 >; [A064059(n): n in [0..40]]; // G. C. Greubel, Sep 27 2024
-
Maple
[seq(binomial(n+1,6)-2*binomial(n,5),n=12..55)]; # Zerinvary Lajos, Jul 19 2006
-
Mathematica
CoefficientList[Series[(42 z^5-252 z^4+616 z^3-770 z^2+495 z-132)/(z-1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{132,429,1001,2002,3640,6188,9996},40] (* Harvey P. Dale, Jan 08 2025 *)
-
SageMath
def A064059(n): return (n+1)*binomial(n+12,5)//6 [A064059(n) for n in range(41)] # G. C. Greubel, Sep 27 2024
Formula
G.f.: (132-495*x+770*x^2-616*x^3+252*x^4-42*x^5)/(1-x)^7; numerator polynomial is N(2;5, x) from A062991.
a(n) = A009766(n+6, 6) = (n+1)*binomial(n+12,5)/6.
a(n) = binomial(n+13,6) - 2*binomial(n+12,5). - Zerinvary Lajos, Jul 19 2006
a(n) = A214292(n+11,5). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 25961/2134440.
Sum_{n>=0} (-1)^n/a(n) = 4160*log(2)/77 - 79917773/2134440. (End)