A064061 Eighth column of Catalan triangle A009766.
429, 1430, 3432, 7072, 13260, 23256, 38760, 62016, 95931, 144210, 211508, 303600, 427570, 592020, 807300, 1085760, 1442025, 1893294, 2459664, 3164480, 4034712, 5101360, 6399888, 7970688, 9859575, 12118314, 14805180, 17985552, 21732542, 26127660, 31261516
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
A064061:= func< n | (n+1)*Binomial(n+14, 6)/7 >; [A064061(n): n in [0..40]]; // G. C. Greubel, Sep 28 2024
-
Maple
[seq(binomial(n,7)-binomial(n,5),n=13..37)]; # Zerinvary Lajos, Nov 25 2006
-
Mathematica
CoefficientList[Series[(132*z^6 - 924*z^5 + 2730*z^4 - 4368*z^3 + 4004*z^2 - 2002*z + 429)/(z - 1)^8, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *) Table[Binomial[n,7]-Binomial[n,5],{n,13,50}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{429,1430,3432,7072,13260,23256,38760,62016},40] (* Harvey P. Dale, Sep 03 2015 *)
-
SageMath
def A064061(n): return (n+1)*binomial(n+14,6)//7 [A064061(n) for n in range(41)] # G. C. Greubel, Sep 28 2024
Formula
a(n) = A009766(n+7, 7) = (n+1)*binomial(n+14, 6)/7.
G.f.: (429-2002*x+4004*x^2-4368*x^3+2730* x^4-924*x^5+132*x^6)/(1-x)^8; numerator polynomial is N(2;6, x) from A062991.
a(n) = C(n+13,7) - C(n+13,5). - Zerinvary Lajos, Nov 25 2006
a(n) = A214292(n+13,6). - Reinhard Zumkeller, Jul 12 2012
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 323171/88339680.
Sum_{n>=0} (-1)^n/a(n) = 7929257917/88339680 - 55552*log(2)/429. (End)