A064150 Numbers divisible by the sum of their ternary digits.
1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 33, 35, 36, 39, 40, 45, 48, 54, 56, 57, 60, 63, 64, 65, 72, 75, 77, 78, 80, 81, 82, 84, 87, 88, 90, 92, 93, 95, 96, 99, 100, 105, 108, 111, 112, 115, 117, 120, 132, 133, 135, 136, 144, 145, 150, 152
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith).
- Paul Dahlenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quarterly, Vol. 56, No. 2 (2018), pp. 163-166.
Programs
-
Haskell
a064150 n = a064150_list !! (n-1) a064150_list = filter (\x -> x `mod` a053735 x == 0) [1..] -- Reinhard Zumkeller, Oct 28 2012
-
Mathematica
Select[Range[200], IntegerQ[#/(Plus@@IntegerDigits[#, 3])] &] (* Alonso del Arte, May 27 2011 *)
-
PARI
isok(m)={m % sumdigits(m, 3) == 0} \\ Harry J. Smith, Sep 09 2009
-
Python
import numpy as np def gen(): for dec_num in range(1,153): tern_num = np.base_repr(dec_num, 3) sum_tern_digits = 0 for i in tern_num: sum_tern_digits += int(i) if dec_num % sum_tern_digits == 0: yield dec_num print(list((gen()))) # Adrienne Leonardo, Dec 28 2024
Extensions
Corrected and extended by Vladeta Jovovic, Sep 22 2001
Offset corrected by Reinhard Zumkeller, Oct 28 2012
Comments