A064438 Numbers which are divisible by the sum of their quaternary digits.
1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 21, 24, 28, 30, 32, 33, 35, 36, 40, 42, 48, 50, 52, 54, 60, 63, 64, 66, 68, 69, 72, 76, 78, 80, 81, 84, 88, 90, 91, 96, 100, 102, 108, 112, 114, 120, 126, 128, 129, 132, 136, 138, 140, 144, 148, 150, 154, 156, 160, 162, 168, 171, 180
Offset: 1
Examples
Quaternary representation of 28 is 130, 1 + 3 + 0 = 4 divides 28.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Paul Dalenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quart. (2018) Vol. 56, No. 2, 163-166.
Programs
-
ARIBAS
maxarg := 190; for n := 1 to maxarg do if n mod sum(quaternarray(n)) = 0 then write(n," "); end; end; function quaternarray(n: integer): array; var k: integer; stk: stack; begin while n > 0 do k := n mod 4; stack_push(stk,k); n := (n - k) div 4; end; return stack2array(stk); end;
-
Mathematica
Select[Range[200],Divisible[#,Total[IntegerDigits[#,4]]]&] (* Harvey P. Dale, Jun 09 2011 *)
-
PARI
isok(n) = !(n % sumdigits(n, 4)); \\ Michel Marcus, Jun 24 2018
-
Python
from sympy.ntheory.factor_ import digits print([n for n in range(1, 201) if n%sum(digits(n, 4)[1:]) == 0]) # Indranil Ghosh, Apr 24 2017
Extensions
More terms from Matthew Conroy, Oct 02 2001
Offset changed from 0 to 1 by Harry J. Smith, Sep 14 2009
Comments