cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048277 Number of (not necessarily distinct) nonsquarefree numbers among C(n,k), k=0..n.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 1, 0, 6, 8, 5, 0, 9, 4, 3, 2, 15, 12, 17, 12, 13, 12, 11, 0, 21, 22, 19, 26, 25, 18, 25, 20, 31, 30, 27, 28, 35, 30, 25, 28, 37, 30, 29, 18, 29, 38, 27, 6, 47, 48, 49, 48, 47, 36, 51, 50, 55, 52, 49, 38, 53, 36, 23, 56, 63, 62, 61, 60, 61, 54, 59, 54, 71, 66, 57
Offset: 0

Views

Author

Keywords

Comments

Number of nonsquarefree numbers (A013929) on row n of Pascal's triangle (A007318). - Antti Karttunen, Nov 05 2014

Examples

			a(13) = 4 because C(13,5) = C(13,8) = 3^2*11*13 and C(13,6) = C(13,7) = 2^2*3*11*13.
If n=20, then C[ 20, k ] is divisible by a square for 13 values of k, i.e. for k = 1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, so a[ 20 ] = 13.
		

Crossrefs

Programs

  • Maple
    seq(nops(remove(numtheory:-issqrfree,[seq(binomial(n,k),k=0..n)])),n=0..100); # Robert Israel, Nov 05 2014
  • Mathematica
    f[ n_ ] := (c = 0; k = 1; While[ k < n, If[ Union[ Transpose[ FactorInteger[ Binomial[ n, k ] ] ] [ [ 2 ] ] ] [ [ -1 ] ] > 1, c++ ]; k++ ]; c); Table[ f[ n ], {n, 0, 75} ]
    Table[(1 + n) - Length[Select[Binomial[n, Range[0, n]], SquareFreeQ[#] &]], {n, 0, 100}] (* Vincenzo Librandi, Nov 06 2014 *)
  • PARI
    a(n) = sum(k=0, n, !issquarefree(binomial(n, k))); \\ Michel Marcus, Mar 05 2014
    
  • PARI
    A048277(n) = sum(k=0,n\2,((0==moebius(binomial(n,k)))*(if(k<(n/2),2,1))));
    for(n=0, 8192, write("b048277.txt", n, " ", A048277(n))); \\ b-file was computed with this program. - Antti Karttunen, Nov 05 2014

Formula

From Antti Karttunen, Nov 05 2014: (Start)
a(n) = 1 + n - A048276(n).
Also, for all n >= 0:
a(n) >= A249732(n).
a(n) >= A249733(n).
(End)

Extensions

Definition corrected by Michel Marcus, Mar 05 2014

A238337 Number of distinct squarefree numbers in row n of Pascal's triangle.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 4, 2, 1, 3, 6, 2, 5, 6, 7, 1, 3, 1, 4, 4, 5, 6, 12, 2, 2, 4, 1, 2, 6, 3, 6, 1, 2, 4, 4, 1, 4, 7, 6, 2, 6, 7, 13, 8, 4, 10, 21, 1, 1, 1, 2, 3, 9, 2, 3, 1, 3, 5, 11, 4, 13, 20, 4, 1, 2, 3, 4, 4, 8, 6, 9, 1, 4, 9, 2, 3, 7, 9, 17, 1, 1, 2, 3, 2
Offset: 0

Views

Author

T. D. Noe, Mar 05 2014

Keywords

Examples

			a(10)=3 because in row 10 of A007318 we observe the three squarefree numbers 1, 10 and 210.
		

Crossrefs

Cf. A048276 (number of squarefree numbers in the entire row), A238336.

Programs

  • Maple
    A238337 := proc(n)
        local sqf ;
        sqf := {} ;
        for k from 0 to n do
            b := binomial(n,k) ;
            if b=1 or numtheory[issqrfree](b) then
                sqf := sqf union { b} ;
            end if;
        end do:
        nops(sqf) ;
    end proc:
    seq(A238337(n),n=0..10) ; # R. J. Mathar, Mar 06 2014
  • Mathematica
    Table[Length[Select[Binomial[n, Range[0, n/2]], SquareFreeQ[#] &]], {n, 0, 100}]

Formula

a(n) + A064460(n) = A008619(n). - R. J. Mathar, Jan 18 2018

A064461 First row of Pascal's triangle that has n distinct nonsquarefree entries, or -1 if no such row exists.

Original entry on oeis.org

0, 4, 13, 8, 9, 12, 17, 20, 16, 18, 26, 24, 62, 27, 34, 33, 32, -1, 36, 40, -1, 95, -1, 79, 48, 50, 54, 60, 56, 74, 67, 65, 64, 73, -1, 94, 72, 91, 85, 83, 80, 84, 119, 88, -1, 97, 104, 101, 96, 98, 100, -1, 115, -1, 108, 114, 112, 123, 122, 120, 121, 125, 131
Offset: 0

Views

Author

Robert G. Wilson v, Oct 02 2001

Keywords

Comments

Numbers such that a(n) is -1: 17, 20, 22, 34, 44, 51, ... - Michel Marcus, Mar 05 2014

Examples

			a(2) = 13 because C(13,5) = 3^2*11*13 and C(13,6) = 2^2*3*11*13.
		

Crossrefs

Programs

  • Mathematica
    f[ n_ ] := (c = 0; k = 1; While[ k < n/2 + .5, If[ Union[ Transpose[ FactorInteger[ Binomial[ n, k ] ] ] [ [ 2 ] ] ] [ [ -1 ] ] > 1, c++ ]; k++ ]; c); Do[ m = 2; While[ f[ m ] != n, m++ ]; Print[ m ], {n, 0, 16} ]
  • PARI
    a(n, v) = {for (i=1, #v, if (v[i] == n, return (i-1));); return (-1);} \\ where v is vector A064460; Michel Marcus, Mar 05 2014

Extensions

Corrected and extended by Michel Marcus, Mar 05 2014
Showing 1-3 of 3 results.