cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064549 a(n) = n * Product_{primes p|n} p.

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 16, 27, 100, 121, 72, 169, 196, 225, 32, 289, 108, 361, 200, 441, 484, 529, 144, 125, 676, 81, 392, 841, 900, 961, 64, 1089, 1156, 1225, 216, 1369, 1444, 1521, 400, 1681, 1764, 1849, 968, 675, 2116, 2209, 288, 343, 500, 2601, 1352
Offset: 1

Views

Author

Henry Bottomley, Oct 16 2001

Keywords

Comments

Index of first occurrence of n in A003557. - Franklin T. Adams-Watters, Jul 25 2014

Examples

			a(12) = 72 since 12 = 2^2*3 and 12*2*3 = 72.
		

Crossrefs

A permutation of the powerful numbers A001694.
Cf. A003557 (a left inverse), A007947, A057521, A078310, A082695, A202535.

Programs

  • Haskell
    a064549 n = a007947 n * n  -- Reinhard Zumkeller, Jul 23 2013
    
  • Magma
    [n^2/( (&+[Floor(k^n/n)-Floor((k^n - 1)/n) : k in [1..n]]) ): n in [1..50]]; // G. C. Greubel, Nov 02 2018
  • Maple
    a:= n -> n * convert(numtheory:-factorset(n), `*`):
    seq(a(n),n=1..100); # Robert Israel, Jul 25 2014
  • Mathematica
    a[n_] := n * Times @@ FactorInteger[n][[All, 1]]; Array[a, 100] (* Jean-François Alcover, Feb 17 2017 *)
    Table[n*Product[If[PrimeQ[d], d, 1], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Jun 15 2019 *)
  • PARI
    popf(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=f[i, 1]); return(p) } { for (n=1, 1000, write("b064549.txt", n, " ", n*popf(n)) ) } \\ Harry J. Smith, Sep 18 2009
    
  • PARI
    A064549(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]++); factorback(f); }; \\ Antti Karttunen, Aug 30 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + p^2*X)/(1 - p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 24 2020
    

Formula

Multiplicative with a(p^k)=p^(k+1) when k>0.
a(n) = n*A007947(n) = n^2/A003557(n).
Dirichlet convolution of A000027 and A202535. - R. J. Mathar, Dec 20 2011
a(n) = A078310(n) - 1. - Reinhard Zumkeller, Jul 23 2013
A003557(a(n)) = n; a(A003557(n)) = A057521(n). - Antti Karttunen, Aug 30 2018
G.f.: Sum_{k>=1} mu(k)^2*phi(k)*k*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Nov 02 2018
From Vaclav Kotesovec, Jun 24 2020: (Start)
Dirichlet g.f.: zeta(s-2) * zeta(s-1) * Product_{primes p} (1 + p^(3-2*s) - p^(4-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = A065463/3 = A065464*Pi^2/18 = 0.234814...
(End)
Sum_{k>=1} 1/a(k) = zeta(2)*zeta(3)/zeta(6) = A082695. - Vaclav Kotesovec, Sep 19 2020
Sum_{k>=1} (-1)^(k+1)/a(k) = zeta(2)*zeta(3)/(3*zeta(6)) = (1/3) * A082695. - Amiram Eldar, Nov 18 2020